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Abstract
The last decade has seen a rapid growth in the number of simulation methods and applications
dealing with the sampling of transition pathways of rare nanoscale events. Such studies are
crucial, for example, for understanding the mechanism and kinetics of conformational
transitions and enzymatic events associated with the function of biomolecules. In this review, a
broad account of transition path sampling approaches is provided, starting from the general
concepts, progressing to the specific principles that underlie some of the most important
methods, and eventually singling out the so-called forward flux sampling method for a more
detailed description. This is done because forward flux sampling, despite its appealing
simplicity and potential efficiency, has thus far received limited attention from practitioners.
While path sampling methods have a widespread application to many types of rare transitional
events, here only recent applications involving biomolecules are reviewed, including
isomerization, protein folding, and enzyme catalysis.

(Some figures in this article are in colour only in the electronic version)
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TS Transition state
TSE Transition state ensemble
TPE Transition path ensemble
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1. Introduction

Proteins, DNA, and RNA are examples of biomolecules that
can be seen as programmable heteropolymers which self-
assemble into well-defined structures. To enact their functions,
these molecules form complexes with other molecules (e.g. for
protein–protein signaling, protein–antigen binding, DNA–
enzyme interactions during replication, etc). Any one of
these biological events, namely those involving the folding
of a biomolecule into its ‘native’ state, the binding of two
biomolecules, and any specific enzymatic action, can all be
considered ‘rare’ events on the timescale of the long pre- and
post-stages of the process. In the following, we constrain
ourselves to elaborate on the protein folding problem, the
paradigm of such rare events, to illustrate the importance of
molecular simulation approaches that target such events.

Proteins are biochemical molecules known to be involved
in almost every biological process, since their function ranges
from catalysis of chemical reactions to maintenance and
structural support of the cell. Their primary structure is
synthesized by the ribosome as linear sequences of amino
acids; these then assume secondary (i.e. α-helix and β-
sheet) and tertiary structures based on a variety of chemical
interactions occurring between amino acid residues. The
transformation of genetic information into unique three-
dimensional native protein structures capable of complex
biological activity depends on the accuracy and efficiency
of the folding process. However, protein folding can be
difficult given that it competes with other cellular events such
as misfolding and aggregation. The understanding of how a
protein folds successfully into its functional configuration is
important for the separation, purification and formulation of
therapeutic proteins, the ageing and storage of proteins drugs,
and the analysis of neurodegenerative human diseases (such
as Alzheimer’s, Huntington’s, and Parkinson’s) associated
with protein misfolding and aggregation [1, 2]. These
are active questions that numerous simulation studies have
aimed to understand since the 1980s [3]. However, because
the characteristic waiting time for the transition to the
folded state is typically orders of magnitude longer than
the time for the folding event itself, conventional ‘brute-
force’ approaches are not indicated for the study of this
process [4, 5]. Furthermore, from ‘brute-force’ simulations
is difficult to obtain the transition path ensemble (TPE) and
the transition state ensemble (TSE), as well as the mechanistic
details contained in the folding pathways. It is here where
path sampling methods are starting to contribute to our
understanding of folding events [6–8].

Taking advantage of the fact that a rare event itself is
not slow, just very infrequent, path sampling algorithms are
effective because they concentrate the computational effort
to the transitional events only. These algorithms thus aim
to collect characteristic pathways (i.e. the TPE) that describe
the system’s transition between stable states (e.g. unfolded
and folded state in a protein). The TPE is then used to
characterize the system’s dynamics at a macroscopic level by
computing rate constants. The TPE could also be analyzed
to understand transitions at a microscopic level by extracting
information about the TSE. Assuming that the pathways in
the TPE harvested by a path sampling algorithm include
examples of the transition state (TS) intermediates, a properly
weighted TSE could be collected by screening configurations
along reactive pathways. The TSE can then be used to
characterize the mechanism by which the transition in complex
systems occurs by identifying the sequence of key events and
bottlenecks involved in a transition.

For high-dimensional complex systems, the probability of
commitment to the basin B (pB) can serve as guide to identify
the TSE. This function is the probability that a system with
a given configuration will commit to state B before reaching
state A; pB is essentially only a function of the system’s
configuration and quantifies the tendency of a configuration
to relax to a particular basin of attraction under the system’s
intrinsic dynamics. The location of the TSE can be determined
by screening configurations with pB = 1/2.

In general, path sampling methods can generate transition
paths by using an order parameter; i.e. an initial approximation
of the reaction coordinate (RxC), that allows one to distinguish
the stable states of the system and monitor the progress along
the reaction pathways without the need to know the exact RxC
of the system. However, the TPE harvested from the path
sampling simulation can be used to estimate a good RxC by
relating pB data of all states on the TPE to a set of ‘collective’
variables (i.e. physically meaningful properties that condense
many atomistic degrees of freedom) [9, 10]. Knowledge of the
RxC provides a more detailed understanding of the dynamics
of the rare event [11].

While several reviews on transition path sampling (TPS)
methods and applications have recently appeared in the
literature (e.g. [7, 12]), in this review a stronger emphasis is
placed on interface-based methods and so-called ‘forward flux
sampling’ in particular, and on applications entailing model
biological systems. Our selection of methods and applications
is not comprehensive and necessarily reflects our own
experience in the field. In section 2, we introduce some of the
most common path sampling methods and how the collection
of the TPE can be used to obtain information about the RxC,
the TSE, and mechanistic details of the transition. Afterwards,
we review some applications to biological systems, ending
with a discussion of the isomerization of alanine dipeptide
and the folding of the Trp-cage mini-protein, cases for which
several path sampling methods have been employed.

2. Path sampling methods

The central idea of path sampling methods is to generate
trajectories for rare events that constitute the TPE; for example,
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for transitions between two well-defined stable states A and
B separated by a high free energy barrier (compared to the
thermal energy of the system) [13–15]. In this section, we
will introduce briefly the TPS formalism, the archetype of
such computational techniques [13–15], to set the stage for
the description of other path sampling methods. A detailed
description of the formalism and applications of TPS can be
found in several TPS review articles [16, 7, 15].

2.1. Transition path sampling (TPS) scheme

In the TPS method, the trajectory space is sampled using a
Monte Carlo (MC) procedure, where a new trajectory x (n)(�)
is generated from an old one x (0)(�). To this end, each path
is represented by an ordered sequence of space points (or time
slices):

x(�) ≡ {x0, x�t , x2�t, . . . , x�} (1)

where x denotes the microscopic state of the system depending
on the dynamics (e.g. x = {r, p}; position (r ) and momenta
(p) of particles) and � specifies the length of the trajectory.
Hence, a trajectory results from �/�t steps that are separated
by a time increment �t and ultimately connecting state A to
B. Regions A and B are defined in terms of an order parameter
λ(r), where r denotes the coordinates of the phase space. The
parameter λ(r) can be chosen such that the system has values
λ(r) � λA(r) in region A and λ(r) � λB(r) in region B.

While there are various schemes to generate these new
trajectories, the shooting algorithm has been proven to be
particularly efficient for sampling trajectory space [16]. In this
procedure a new x (n)(�) pathway is generated from a randomly
selected time slice x (0)t ′ of the old path (see figure 1). For
deterministic dynamics, the x (0)t ′ point is modified, for instance,
by adding a small perturbation to the momenta (no perturbation
is required for stochastic dynamics), yielding x (n)t ′ from which
a new trajectory is constructed by following forward and
backward the intrinsic dynamics of the system (e.g. integrating
the equations of motion). This newly generated path is then
accepted or rejected depending on the Metropolis acceptance
probability:

Pacc[x (0)(�) → x (n)(�)] = hA[x (n)0 ]hB[x (n)� ]

× min

[
1,
ρ(x (n)t ′ )

ρ(x (0)t ′ )

]
(2)

where ρ(x) is the stationary distribution evaluated at x and
hA[ξ ] is an indicator function for state A such that it is
unity if the system is in the initial basin at ξ and is zero
otherwise [13–15]. Analogously, hB[ξ ] is unity if the system
is in the final basin at ξ and zero otherwise.

To increase the efficiency of the TPS simulations several
alternative optimization techniques have been proposed includ-
ing methods to control the average acceptance probability in
equation (2), {e.g. by changing the magnitude of the momen-
tum perturbation (for deterministic trajectories) [17, 14]}, com-
bination of TPS with parallel tempering simulations at the path
level [18, 19], and complementing shooting moves with shift-
ing moves and path reversal moves [15]. Other researchers
have developed techniques to enhance the effectiveness of the

Figure 1. Schematic illustration of the shooting algorithm in TPS
simulations. A new trajectory path (blue/black) is generated from an
old one (red/gray) by choosing randomly one state on the old
trajectory. For deterministic trajectories, this shooting point is
modified by adding a small perturbation δp to the particle momenta.
From this modified point a new path is constructed by following the
intrinsic system dynamics forward and backward. For stochastic
dynamics no perturbation of momenta is required. The color scheme
of the background free energy landscape changes from highest
(white) to lowest (black) elevations; this convention also applies to
figures 2–4 and 7–9.

shooting approach by guiding the selection of configurations
for shooting moves along the paths [20, 10]. For example,
Chopra et al [20] proposed an algorithm to enhance the local
sampling of transition states by using committor probabilities
to bias the selection of configurations for shooting moves and
performing simulations in parallel.

The transition rate constant between two stable states A
and B can be determined by a correlation function of state
populations in time, C(t) [15]. If the rare transitions between
the stable states A and B are separated by a single dynamical
bottleneck, C(t) can be defined as the conditional probability
of finding the system in final region B at time t provided it
started in A at time t = 0, i.e.

C(t) = 〈hA(x0)hB(xt)〉
〈hA(x0)〉 , (3)

where 〈· · ·〉 denotes equilibrium ensemble averages and xt

is the set of coordinates specifying the state of the system
at time t . Once C(t) is determined for times greater than
the characteristic time (τmol) required to cross the dynamical
bottleneck and forget how it got from A to B, kA→B can be
extracted by taking the derivate of the correlation function
C(t) [14, 15]:

kA→B ≈ dC(t)

dt
= d〈hA(x0)hB(xt)〉/dt

〈hA(x0)hB(xt ′)〉 × C(t ′) (4)

which implies that the time-dependent derivate of C(t)
reaches a plateau for τmol < t � τr xn (where τr xn =
(kA→B + kB→A)

−1). Hence, the average transition rate
constant with TPS can be computed from C(t ′) for a time t ′
that can be much smaller than t . C(t) in the time interval
0 < t < � is determined by: (i) a single path sampling
simulation to calculate 〈hA(x0)hB(xt)〉, and (ii) an umbrella
simulation to get C(t ′) for t ′ � t :

C(t) =
∫ λB

max

λB
min

dλP(λ, t), (5)
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where P(λ, t) is the probability of finding a time slice xt

at an order parameter λ, which is usually determined by
dividing the phase space into a sequence of N + 1 overlapping
regions, and the integral bounds are the λ values that enclose
region B.

TPS has several shortcomings that led to the development
of new path sampling methods. TPS requires knowledge of the
initial state phase density, which means that the system must
be in equilibrium. The initial trajectory is usually obtained
by letting the transition occur spontaneously in a long brute-
force simulation [15]. However, this may not be practical
for some complex systems and other alternative approaches
have been used. For example, the initial path can be obtained
by driving the system from A to B artificially from a brute-
force simulation at high temperature [21, 22]. In this case, the
initial path is not representative of the TPE at the conditions
of interest and TPS may lead to the collection of non-reactive
trajectories [16]. Moreover, the rule described in equation (2)
provides a method to sample only pathways of a fixed � length
which limits the efficient implementation of TPS [16]. To
overcome these limitations, improved TPS variants have been
developed such as an approach where trajectories are sampled
using flexible path lengths [8], and methods that employ a
series of interfaces in phase space to facilitate the generation
of transition paths [23–25].

2.2. Interface-based transition path sampling schemes

Transition interface sampling (TIS) was developed to estimate
the kinetics of rare events with flexible path length by a TPS-
like procedure [24, 25]. This method employs a series of
nonintersecting interfaces (n + 1) between the initial (A) and
final (B) regions {λ0, . . . , λn} by means of a suitable order
parameter λ that increases monotonically as the interfaces
λ0, . . . , λn are crossed, such that λ � λ0, λn = λB, and
λi > λi−1. The transition rate constant kA→B is thus given
by the product of two terms:

kA→B = �̄A,0 P(λn=B|λ0), (6)

where �̄A,0 is the effective flux of trajectories that leave
the basin of attraction A through the first interface λ0, and
P(λn=B|λ0) is the probability that a trajectory that leaves A
and crosses λ0 will reach B before returning to A. Hence,
equation (6) defines the rate constant of the process as an
average rate of transitions from A to B using an ‘effective
positive flux’ expression [5, 24, 25]. P(λn=B|λ0) can be
decomposed as a product of conditional probabilities:

P(λn=B|λ0) =
n−1∏
i=0

P(λi+1|λi ) (7)

where P(λi+1|λi ) is the probability that a trajectory that visits
A and crosses λi for the first time will subsequently reach
λi+1 without returning to the initial region A. Each of the
factors in equation (7) is then computed in separate path
sampling simulations for each pair of adjacent interfaces. For
example, for the interface λi , the TIS approach consists of
choosing a random slice on an existing trajectory that leaves

Figure 2. In the TIS method, the phase space between two
well-defined stable states A and B is partitioned via a series of
nonintercepting interfaces. The average rate constant is estimated by
measuring the effective positive flux through these interfaces. For
each pair of adjacent interfaces (λi , λi+1), a path ensemble simulation
is performed where a new path belonging to this ensemble is
generated if it starts in A, crosses λi , and then either crosses λi+1 or
returns to region A (red/gray). Trajectories that do not cross λi are
not part of this ensemble (blue/black).

A and crosses λi , reaches λi+1 or returns to A. This time
slice is modified (only for deterministic trajectories) and then
used to generate a new partial trajectory using the shooting
algorithm [15] (see section 2.1). This new partial path is
accepted in the TIS path ensemble belonging to interfaces i
and i +1, if it leaves A, crosses λi , and either reaches λi+1 or
returns to A. Figure 2 shows a schematic illustration of the TIS
procedure.

For systems involving diffusive barriers (and long
trajectories), the partial path TIS (PPTIS) method [23] holds
an advantage over TIS because the partial paths generated
are much shorter, increasing the sampling efficiency. In
contrast to the TIS method, PPTIS samples partial paths that
only span one or two interfaces using the TIS framework.
However, this approach assumes Markovian ‘memory loss’
over subsequent interfaces to justify the shorter paths [23].
The crossing probabilities in equation (7) are thus calculated
by a recursive relation in terms of single interface crossing
probabilities which are defined depending in their starting and
ending interfaces. An advantage of the PPTIS method is that
the forward and backward rate constants can be determined
from a single path sampling simulation.

TIS and PPTIS have also been combined with replica
exchange methods to enhance dramatically the path sampling
efficiency [26, 27]. Rogal and Bolhuis [28] extended the
formulation of the TIS algorithm to harvest trajectories
connecting multiple stable states and obtain expressions for the
rate constants of all possible transitions. Moreover, the TIS and
PPTIS algorithm can be also used to calculate simultaneously
the reaction rate constant and the free energy profile along a
chosen order parameter [29].

In the jargon of MC methods, TPS-like methods
(including TIS and PPTIS) are ‘dynamic’ MC techniques
because a new path is generated by proposing a ‘change’ to an
older one. It is also possible to formulate ‘static’ MC methods
where new pathways are generated from scratch; the method
described next belongs to this category.
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Figure 3. In DFFS, a branched path (red thick lines) is constructed
by generating partial paths between consecutive interfaces λi and
λi+1 for 0 � i � n − 1. The first stage entails a simulation run in the
A basin shown by a green/dark gray thick line. Starting points for the
subsequent generation of branched paths are labeled with a gray
circle at λ0. The second stage corresponds to the trial runs (Mi ) fired
from λi ; those that reached the next λi+1 interface are shown by a
red/gray thick line and those which failed to reach λi+1 are shown by
a blue/gray dotted line.

2.3. Forward flux sampling (FFS) schemes

FFS algorithms were developed to encompass stochastic
nonequilibrium systems in which a priori knowledge of
the phase space density is not required [5, 30]. FFS-type
simulations are not limited to nonequilibrium systems and
can use different types of stochastic dynamics, including
molecular dynamics, by incorporating a stochastic component
in the trajectory [31]. Like TIS and PPTIS, FFS schemes
allow the computation of both rate constants and TPE by
dividing the phase space between the initial and final region
into a series of interfaces. Distinctively, FFS does not
require backward pathways, hence eliminating the need for the
backward shooting part of TPS or TIS; this is the feature that
allows FFS to be applicable to nonequilibrium systems. The
rare paths are generated such that any trajectory from A to B
passes through each interface in turn. The transitions between
interfaces are free to follow any possible path between A and
B, including paths crossing previous interfaces several times,
as illustrated in figure 3. Although a series of interfaces in the
phase space is used as in other sampling techniques, a long
decorrelation time does not present an issue because FFS is
not treated as a MC Markov chain [7]. Hence, trajectories
are generated without assuming a steady-state distribution (or
‘memory loss’ during the transition) at each interface [29].

The rate constant for the system’s transition between
stable states is also computed using the ‘effective positive
flux’ expression in equation (6). The main difference between
FFS and (PP)TIS is the way that the crossing probabilities
are computed. At present, three path sampling schemes
have been proposed to generate the TPE: direct forward flux
sampling (DFFS), the branched growth method (BG), and the
Rosenbluth method (RB) [5]. The DFFS and BG schemes,
the simpler ones to implement, will be discussed in the
following subsections. Allen et al [4, 5] have proposed several
extensions of the FFS formalism to improve the efficiency of

all three methods. For instance, the computational expense
of simulating a ‘failed’ trial from λi all way back to A
can be reduced by pruning trial paths which go toward A
(i.e. trial paths reaching λi−1 from λi are terminated with
certain probability). Extensions of the FFS algorithm have also
been reported to describe pathways connecting the two stable
states through multiple intermediates states [32].

The FFS method can be also used for a simultaneous
calculation of the kinetic data and the underlying stationary
probability distribution of the system. For example, Valeriani
et al [33] computed stationary distributions P(λ) (i.e. the ‘free
energy’ profile for equilibrium systems or the steady-state
probability distribution for nonequilibrium systems) along an
order parameter λ by performing two FFS simulations to obtain
the rate constants for the forward and backward transitions.
These rates are then used to reweigh contributions to P(λ)
from trajectories originating from both region A and region B.
A complementary method [32] that is restricted to equilibrium
systems (denoted FFS–US) entails an umbrella sampling (US)
simulation following an original FFS protocol (pre-optimized
for order parameter [34] and staging [35]) to sample the regions
inside each window until the partial path ensemble loses any
‘memory’ of where it originated.

Compared to other methods to obtain the TPE and
rate constants, the main advantages of FFS are arguably its
simplicity and its ability to describe not only equilibrium
but also nonequilibrium systems. On the other hand, in
applications to complex systems the efficiency and accuracy
of FFS can be sensitive to [4, 5, 7, 34, 35]: (i) the choice of
order parameter, and (ii) the positions of the interfaces and the
extent of sampling of the interface ensembles, in particular for
the first interface. Such a sensitivity of FFS is partially due to
a tendency to propagate sampling errors that is larger than that
of other interface-based path sampling methods. These points
are discussed in more detail in section 2.5.

2.3.1. Direct forward flux sampling (DFFS). The DFFS
scheme is a two-stage algorithm illustrated in figure 3. The first
stage entails the evaluation of the flux �̄A,0 in equation (6); this
is done (as with TIS) by a simulation in basin A and computing
the ratio of the total number N0 of crossing configurations at
λ0 to the total length � of this run. Each such state at λ0

(whose phase space coordinates are saved) corresponds to a
configuration that crosses λ0 in a trajectory coming from A;
i.e. the trajectory has to return to A between consecutive stored
points at λ0.

In the second stage of the algorithm, consecutive path
sampling simulations are performed for each interface λi to get
conditional probabilities, P(λi+1|λi ), of reaching λi+1 from λi

(see equation (7)). Partial paths are thus generated from the
collection of stored points at λ0(N0) by firing M0 trials runs,
which are continued until either reaching λ1 or returning to
the initial region A. Each trial run starts from a random point
selected from the N0 points at λ0. If no successful trial runs
were generated at λ1 (i.e. N (0)

S = 0), the procedure is stopped
and P(λn=B |λ0) = 0. Otherwise, all end point configurations
N (0)

S that reached λ1 are stored and used as starting points for
M1 trial runs toward λ2 (or back to A). If N (1)

S > 0 of the trial
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runs reach λ2, the partial paths are continued by initiating M2

trials runs to λ3, randomly chosen from the N (1)
S successful

configurations. This procedure is repeated until either the
final region λn = λB is reached or no successful trials were
generated at some intermediate interfaces. The conditional
probabilities in equation (7) for each interface are estimated
from:

P(λi+1|λi ) = N (i)
S /Mi . (8)

The correctly weighted TPE can be extracted from the
phase space coordinates of the interfacial points of the system
along all trial runs which successfully reach λi+1 from λi , and
the information on the connectivity of the partial paths. The
characteristic transition paths are thus obtained beginning with
the collection of trials which arrive at λB = λn from λn−1 and
tracing back the sequence of connected partial paths which link
them to region A. As illustrated in figure 3, the TPE results
in a ‘branching tree’ of transition paths, in which partial paths
between interfaces close to A may be shared by many members
of the TPE.

2.3.2. The branched growth (BG) sampling method. The BG
method is illustrated schematically in figure 4, where branched
transition paths are generated one by one. In the first stage
of the algorithm, the flux �̄A,0 in equation (6) is obtained as
described for the DFFS method in section 2.3.1. In the second
stage of the algorithm, branched paths are generated from the
stored configurations at λ0 (gray circles at λ0 in figure 4) and
the conditional probabilities P(λi+1|λi) are estimated. To do
so, the BG method samples ki trial runs per stored point at
λi , rather that sampling Mi randomly selected points at λi as
with DFFS. The branched path is started by selecting randomly
a state at λ0 from which k0 trial runs are fired and continued
until either reaching λ1 or returning to the initial region. Each
end point configuration N (0)

S resulting from a reactive partial
path (i.e. reaching λ1) is stored and used as the starting point
for k1 trial runs. If N (1)

S > 0 of those trial runs reach λ2,
the branching tree path is continued by initiating k2 trials runs
to λ3 from each of the N (1)

S successful configurations. This
procedure is repeated until either the final region λn = λB

is reached or because no successful trials were generated at
some intermediate interfaces. An estimate of the conditional
probabilities to jump one interface is given by:

P(λi+1|λi ) = N (i)
S

ki N (i−1)
S

. (9)

The same procedure as described before is used to create a
new branching tree starting from a different randomly chosen
point at λ0. After many such branched paths have been
generated, final estimates for P(λi+1|λi ) and P(λn=B|λ0) (via
equation (7)) are obtained using Ns data from all the paths. The
TPE is obtained just as was described before for the DFFS.
Note that for the BG, Mi , the total number of trial runs fired at
λi (from each starting point at λ0) is given by:

Mi = ki

i−1∏
j=0

k j P(λ j+1|λ j ). (10)

Figure 4. Generation of a branched path (red/gray thick lines) in the
BG method. The first stage involves a simulation run in the A basin
shown by the thick green/black line. Starting points for the
subsequent generation of branched paths are marked with a gray
circle at λ0. The second stage corresponds to the trial runs (ki ) fired
from λi ; those that reached the next λi+1 interface are shown by a
red/gray thick line and those that failed to reach λi+1 are shown by a
blue/gray dotted line.

2.3.3. Computational efficiency of FFS-type schemes. Allen
et al [4] estimated the computational efficiency (ε) for FFS-
type simulations as the inverse of the product between the
computational cost C and the relative statistical error ν in the
estimated value kA→B of the rate constant per starting point at
λ0:

ε = 1/[Cν]. (11)

Following equation (6), the variance, V , in the estimate of
kA→B depends on the relative variance of both �̄A,0 and
P(λn=B|λ0). Assuming that the error in �̄A,0 could be ignored,
the V in kA→B is approximated to be:

V [kA→B] ∝ V [P(λn=B|λo)]. (12)

Assuming that successful trial runs at λi (N (i)
S ) are

uncorrelated, the statistical error ν is

ν ≈ N0
V [P(λn |λ0)]

P(λn |λ0)2
(13)

where N0 is the number of starting points at λ0. If
V [P(λi+1|λi)] is the variance in the estimates of P(λi+1|λi ),
then propagating errors from equation (7) leads to

V [P(λn|λ0)] = P(λn |λ0)
2

n−1∑
i=0

V [P(λi+1|λi)]
P(λi+1|λi )2

. (14)

Allen et al [4] defined the computational cost (factor C in
equation (11)) as the average number of simulation steps
required by a particular FFS-type sampling scheme per starting
point at λ0. Hence, ignoring any other contributions to the CPU
time, the average cost is approximated by:

C = R + 1

N0

n−1∑
i=1

Mi Ci (15)

where R is the average cost of generating one starting point
at λ0 and Ci stands for the cost of firing one trial run from
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interface λi , which is approximated by

Ci = S{P(λi+1|λi )[λi+1 − λi ] + (1 − P(λi+1|λi ))[λi − λA]}
(16)

where the average length of a partial trajectory from λi to λ j

was assumed to be linearly proportional to |λ j − λi |, with a
proportionality constant S [4].

For the DFFS method, P(λi+1|λi ) is found from
equation (8), where N (i)

s can be modeled using the binomial
distribution so that equation (14) becomes [4]:

V DFFS[P(λn |λ0)] = P(λn |λ0)
2

n−1∑
i=0

1 − P(λi+1|λi )

Mi P(λi+1|λi)
. (17)

The computational cost for DFFS simulation CDFFS is
approximated by substituting equation (16) into (15), and
taking into account the possibility that the cost is reduced by
failing to reach later interfaces (i.e. as in the case that Mi is
small):

CDFFS = R + 1

N0

{
M0C0

+
n−1∑
i=1

[
Mi Ci

i−1∏
j=0

[
1 − (1 − P(λ j+1|λ j))

M j
]]}

. (18)

Finally, equations (13), (17) and (18) can be substituted
into equation (11) to give the complete expression for the
computational efficiency of DFFS simulations.

For the BG method, the variance V BG in the estimated
value of P(λn=B|λ0) is now [4]:

V BG[P(λn |λ0)] = P(λn |λ0)
2

N0

n−1∑
i=0

1 − P(λi+1|λi )∏i
j=0 k j P(λ j+1|λ j )

.

(19)
The computational cost for a BG simulation CBG per

starting point at λ0 is estimated by substituting equations (10)
and (16) into (15):

CBG = R + k0C0 +
n−1∑
i=0

[
ki Ci

i−1∏
j=0

P(λ j+1|λ j )k j

]
. (20)

Finally, equations (13), (19) and (20) can be substituted
into equation (11) to get the computational efficiency of BG
simulations.

2.4. Other related interface-based methods

2.4.1. Weighted-ensemble method. Motivated by the
difficulty of estimating reaction rate constants for systems
with diffusion-controlled transitions, Huber and Kim [36]
developed a path sampling approach that attempts to
maintain a measurable steady-state flux along a ‘progress’
coordinate by dynamically controlling the distribution, in
configurational space, of a weighted ensemble (WE) of
trajectories. Each resulting unbiased transition trajectory
represents a juxtaposition of multiple pathways that either
divide or merge, according to their weights, when progressing
through sequential reaction regions (slabs); the statistical path
ensemble thus obtained yields asymptotically the correct TSE

and reaction rate constants. Because of the subdivision of
the reaction progress into slabs in configuration space, it has
been noted [37] that the WE method could also be considered
the precursor of other interface-based transition pathway
formulations, e.g. of the branched growth FFS reviewed above.

In the original formulation [36], the WE was used
with Brownian dynamics (BD) to address the timescale
problem of rare diffusional events by applying a pruning–
enriching procedure to an ensemble of independent Brownian
pseudoparticles. These pseudoparticles, in configurational
space, represent different partial trajectories of the system
which must be pruned (merged) or enriched (cloned) according
to their progress from the reactant to the product basins.
The individual state of each pseudoparticle is monitored
by subdividing a coordinate that measures the reaction
progress into several slabs (bins), such that the number
of pseudoparticles distributed throughout each bin, n, is
maintained approximately constant by dynamically pruning
and enriching them and their weights. This assures that slabs
of the configurational space from which the pseudoparticles
diffuse rapidly (i.e. in the neighborhood of transition states) are
sampled uniformly with respect to those near the basins (where
pseudoparticle diffusion relaxes slowly), and that the statistics
of probability fluxes across their interfaces are measured
accordingly. A schematic illustration, shown in figure 5,
depicts the WE dynamics for a simple two-state system.

The WE method represents an improvement of the
flux-over-population approach of Farkas [38, 39], and also
over the method of Northrup–Allison–McCammon [40], for
problems with long diffusive transitions. For instance, the
WE calculation of the reaction rate for the binding of a
monoclonal antibody (NC6.8) to a hapten (a case mediated
by a large barrier) was shown to be about eight times more
efficient than standard BD under the formulation of Northrup–
Allison–McCammon [41, 42]. For systems without significant
barriers, as that of the homodimerization of CuZn superoxide
dismutase, the use of WE led to negligible computational
gains but yielded results in agreement with experiment and
with standard BD [42]. Similarly, the WE method has been
used to study the conformational transition of a ‘double-
native’ model of calmodulin’s N-terminal domain [43], from
a calcium-bound to an unbound state, and found that it
yielded increasingly larger efficiency gains, when compared
to brute-force simulations, as the energetic barrier is increased
(i.e. lowering the temperature). For this case, a decrease of
20% in temperature led to an increase in efficiency from one
to three orders of magnitude. Even larger gains in terms
of CPU time, of about five orders of magnitude compared
to brute-force BD, were predicted in relation to the folding
time of a four-helix bundle protein within the framework of
the diffusion–collision model [44]. The WE has also allowed
access to the long timescales of the electrostatically steered
homodimerization of hemoglobin and to examine the role of
polar residues in the association mechanism [45–47, 42].

2.4.2. Milestoning. The milestoning method [48, 49]
attempts to capture the complete dynamics of long-
timescale phenomena occurring over a reactive pathway by
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Figure 5. Schematic illustration of pseudoparticle dynamics under the WE method. The partial trajectories (or pseudoparticles, represented as
partially filled circles) move along a progress coordinate (dashed line), subdivided into three bins (slabs in configurational space), from basin
A to B. After every period of time τ of dynamic evolution, a pruning–enriching process maintains the balance of the weights and number of
pseudoparticles such that each bin contains two reactive trajectories (adapted from [43]).

Figure 6. Schematic illustration of: (a) three short MD trajectories started from milestone Hi , with initial positions distributed according to
X ∈ Hi , and reaching neighboring milestones Hi+1 or Hi−1; where the basin A to B represent the reactant and product states, respectively
(adapted from [49]); and (b) the initial (iteration 0) and final (iteration N) states of a path sampling simulation using the string method,
highlighting the iterative redistribution of the isocommitting hypersurfaces�z and the development of a defined reaction tube delimited by the
dashed lines; the basins A to B are defined as in (a) (adapted from [62]).

first subdividing it into transition interfaces or milestones
(i.e. coarse graining), and then piecing together the
contributions of the local microscopic dynamics at each slice.
This is shown schematically in figure 6(a). The milestones are
hypersurfaces Hi that split the phase space along a reaction
pathway, i.e. between the reactant (A) and product (B) basins.
If this partitioning is possible, then the statistical properties
of the sequence of milestones {Hi}i=1,2,...,M can be obtained
by starting short MD trajectories at initial configurations with
phase space coordinates X ∈ Hi , where X is distributed
according to either the equilibrium [48, 49] or the first hitting
point probability densities [50]. Each MD trajectory integrated
for a time τ contributes to the local forward K +

i (τ ) or
backward K −

i (τ ) distributions of pausing times, according to
the corresponding ending interface, Hi+1 or Hi−1 respectively;
where τ is the time spent (incubation) in the neighborhood of
Hi before first hitting any of the adjacent hypersurfaces.

The evolution of the system is computed following the
Montroll–Weiss continuous-time random walk [51], in which

Qi (t), the probability that the random walk reaches Hi at time
t , is calculated by a probability balance considering the earlier
arrival to the neighboring hypersurfaces Hi+1 and Hi−1, and
the subsequent transition from these to Hi , therefore

Qi (t) = ηiδ(t − 0)+
∫ t

0
[K −

i+1(t − t ′)Qi+1(t
′)

+ K +
i−1(t − t ′)Qi−1(t

′)] dt ′, (21)

where ηi is the initial milestone probability distribution and t ′
is the arrival time to the adjacent hypersurfaces. Equation (21)
allows computation of the time evolution of the global
probability Pi (t) of having crossed Hi and remaining between
Hi+1 and Hi−1 at time t , through the integral equation

Pi(t) =
∫ t

0

(
1 −

∫ t−t ′

0
Ki (τ ) dτ

)
Qi (t

′) dt ′, (22)

where Ki (τ ) = K +
i (τ ) + K −

i (τ ); note that the term in the
parenthesis is the probability of waiting in the neighborhood
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of Hi and not leaving before t ′, expressed in terms of the
probability distribution of pausing times Ki (τ ).

Within the milestoning approximation, the problem of
estimating the transition rate constant between two stable states
can be reduced to an initial value problem with an absorbing
boundary at HB, i.e. a first-passage time problem [52]. The
mean first-passage time can be estimated from the first moment
of the first-passage time distribution, ϕ(τ) = dPf (t)/dtt=τ , as

τMFPT =
∫ ∞

0
tϕ(t) dt , (23)

where the transition is from Hi at t = 0 to the absorbing
boundary milestone H f whose K ±

f (τ ) = 0. Then, the
transition rate constant is simply kAB = 1/τMFPT [39].

For biological systems, milestoning has been applied
to the α-helix to β-sheet transition pathway of the alanine
dipeptide in aqueous solution [49], and to the allosteric
transition of Scapharca hemoglobin (HbI) [53]. The transition
minimum energy path required to define the sequence
of milestones {Hi}i=1,2,...,M was derived without explicit
calculations for the alanine dipeptide, whereas for HbI a
preliminary estimation was required. In both cases, significant
computational gains were obtained with respect to direct MD
simulations of about one and three orders of magnitude,
respectively.

2.4.3. String method. This approach, in its finite temperature
formulation (FTS) [54], shares a fundamental similarity with
the previously discussed interface-based methods, in that
it is based on the idea of studying the transition kinetics
as a stochastic process across hypersurfaces orthogonally
defined along the reaction pathway; although it differs from
milestoning, for example, in that it is effectively a path
sampling algorithm defined within the framework of the
transition state theory (TST) [55, 56]. In its limiting
formulation, the zero temperature string method (ZTS) [57],
the approach is reminiscent of the nudge elastic band
method [58, 59] because it searches the minimum energy
pathway (MEP) and saddle point along a smooth curve ϕ∗
(string) connecting two potential minima; the hypersurfaces
in this limit become points or images on the string which
dynamically evolve to satisfy the condition of null potential
gradient (∇V )⊥ normal to ϕ∗ [57]. This latter limiting case
will not be discussed further as it does not consider the TPE.

In the FTS approach, schematically illustrated in
figure 6(b), the MEP after N iterations is no longer
described by a single pathway but by the mean transition
path ϕN of a transition tube containing the most probable
transition trajectories [54, 60]. The process of finding such
trajectories is directly linked to the problem of finding the
hypersurfaces that rigorously define the reaction coordinate
(RxC), i.e. isoprobability surfaces with constant committor
probability (pB(x) = z ∈ [0, 1]). Transition tubes
are therefore defined by the hitting probability distribution
of reactive pathways crossing the isocommittor surfaces,
which in turn are stochastically characterized, within the
framework of a Markov process, by the backward Kolmogorov

equation [61]. From the Markovian property and statistical
time reversibility, it follows that the distribution of points
where the trajectories hit the isocommittor surfaces (i.e. the
transition tube in configuration space) is equivalent to
the equilibrium distribution of trajectories weighted on
the isocommittor surface. This result has important
methodological consequences because it allows one to simplify
the high-dimensional space of the backward Kolmogorov
equation within a variational formulation of pB(x). Under
this approximation, the resulting isocommittor surfaces �z =
{x : pB(x) = z}, shown in figure 6(b), are reduced to the
family of hyperplanes {Pα, α ∈ [0, 1]} orthogonal to the mean
string path ϕ(α) of the transition tube [62].

Since the transition pathways are defined in configuration
space instead of physical time (as in strictly TPS-based
methods), this formulation has an essential numerical
advantage over others based on TPS: the isocommittor
surfaces can be specified initially without prior knowledge
or integration of the transition trajectories [60, 62]. A
variational formulation is also possible for a large set of
collective degrees of freedom, where the FTS method yields
the isocommittor surfaces that minimize the mean free energy
path (MFEP) [63, 64].

The FTS method has been tested extensively on the
alanine dipeptide problem, both in a vacuum and in aqueous
solution [9–11]. The isocommittor surfaces obtained by FTS at
the transition state region between the metastable conformers
C7eq and C7ax, over the (φ, ψ) [9, 11] and (φ, ψ, θ, ζ ) [10]
dihedral angles, were estimated in accord with the committor
distribution computed directly on the hyperplanes; this is
obtained with a lower computational cost than other TPS-based
methods [12, 13]. The FTS in collective variables has been also
implemented [14] to characterize the collapse mechanism of
a hydrophobic chain in water [15]; a process with significant
relevance to understanding the assembly of multiple protein
fragments and folding of single proteins in aqueous solutions.
The MFEP computed with the string method, in agreement
with more expensive MD calculations, confirmed the collapse
pathway previously proposed for this process using a coarse-
grained description of the solvent [15].

2.5. Selecting and sampling the order parameter l

Path sampling methods usually have several drawbacks that
are worth mentioning. For instance, the efficiency and
completeness of the TPE sampling depends on the quality of
the order parameter λ. In this sense, FFS-type methods are
more dependent on a good order parameter than methods such
as TIS and TPS (which only use λ to distinguish the stable
states of the system) [7]. In the case of FFS-type simulations,
the rate constant estimate and the sampled pathways will
depend strongly on the quality of the ensemble of starting
points at the first interface λ0. If this ensemble is under-
sampled, errors will propagate through successive interfaces.
This does not happen in TIS where each individual interface
ensemble eventually converges [7]. By its ‘static’ nature,
FFS does not allow pathways to relax the portion before
the current interface. Moreover, even though a good order
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parameter could be determined and used to partition the phase
space, the efficiency of the sampling is still sensitive to the
number and position of the interfaces and to how extensively
different interfaces are sampled [4, 5, 34, 35]. Hence, in
general, the two main challenges to address in interface-based
path sampling simulations are: (i) the determination of a
good order parameter and (ii) the optimization of interface
sampling [34, 35].

An adequate order parameter λ should be a variable that
quantifies progress along the reaction pathways and permits
one to discriminate between the stable states. A clear
distinction should be made between the concepts of reaction
coordinate (RxC) and a good order parameter. The former
is able to tell how far a ‘reaction’ has proceeded and should
be able to identify whether a particular configuration belongs
to the transition state ensemble (TS). While a good order
parameter should be able to tell whether a reaction has just
started or is about to be completed, the RxC is a dynamical
variable that measures the complete progress of the reaction
from start to finish. Therefore, a good RxC (i.e. one that
approximates well the true RxC) can serve also as a good
order parameter, but the inverse is not necessarily true. As
stated in the introduction, the RxC is closely related to the
probability of a configuration x to commit to the final state
B; i.e. the ‘committor probability’ pB(x), which quantifies the
tendency of configuration x to relax to the basin of attraction
B under the system’s intrinsic dynamics [10]. A schematic
view of the procedure for the determination of committors is
given in figure 7. Configurations in the initial basin A have
pB = 0, those in basin B have pB = 1, and those at the TS
have pB = 1/2. Hence, pB can be seen as a perfect RxC
in the sense that it provides a quantitative description of the
dynamic behavior of every state along a trajectory. Indeed,
any good RxC should parametrize the committor such that its
distribution P(pB) for configurations with the same RxC value
should be sharply peaked around a characteristic pB value [9].
On the other hand, a poor RxC leads to non-unimodal P(pB)

as configurations with the same value of the RxC can have very
different pB values.

While the committor pB can be taken itself as the
perfect order parameter for path sampling simulations, to
be of practical use pB (i.e. λ(q(x)) = pB) should be
related to a few collective variables (themselves functions of
the configurations) that encapsulate many atomistic details
into physically important properties [9]. Here, q(x) =
q1, q2, . . . , qm , refers to a set of m collective variables,
which are considered potentially useful descriptors for the
isocommittor surface. Since a model for the RxC corresponds
to the pB surface response, the TSE and hence the mechanistic
details of the process can be readily obtained by only
analyzing characteristics of the collective variables at the
pB contour of 1/2 ± σ (where σ is the desired level
of statistical accuracy) [10]. In high-dimensional complex
systems, however, it is not a trivial task to find a good
RxC. Several committor-based analysis methods have been
proposed, including conventional committor analysis [15, 10],
Bayesian path statistics [65], genetic neural networks [9],
string methods [63, 66], likelihood maximization [67, 10], and
FFS–least square estimation [34].

Figure 7. Sketch of the conventional committor analysis procedure.
The committor for a state along a trajectory (thick solid line) is
estimated from the fraction of fleeting trial trajectories started therein
that reach region B. Partial paths reaching B are show by a red/gray
line and those which reached A before B are shown by a blue/black
line. pB ≈ 0 for states close to the A basin and pB ≈ 1 for states
close to the B basin. The ensemble of configurations for which
pB ≈ 1/2 is called a transition state ensemble (TSE).

As illustrated in figure 7, in conventional committor
analysis [15, 10] a minimum number of fleeting trajectories,
Nmin, are initiated from a starting configuration along one of
the paths belonging to the TPE. The committor probability
pB is therefore estimated from the fraction of paths that end
in state B. A statistical analysis carried out by Peters and
Trout [10] indicates that good statistics require hundreds of
estimates for pB histograms and analysis of �100 trajectories
in the TPE. Unfortunately, each pB estimate requires of the
order of Nmin = 10 fleeting trajectories, each half as long
as a reactive trajectory [10]. Hence, the difficulties and
computational cost of the committor analysis have motivated
recent attempts to systematize the search for RxCs. For
example, Hummer [68, 65] used Bayesian path statistics
to introduce a new criterion for the TS as those points
in configurational space with high probability p(TP|x) that
equilibrium trajectories passing through them are reactive
(i.e. they connect stables states). Hence, this definition of
p(TP|x) gives higher values than those configurations (x) in
the TPE which are common to many transition paths but are
rarely visited in equilibrium. The projection of p(TP|x) onto
a good RxC should thus give a sharply peaked distribution,
which can be used to choose among different candidate
order parameters [9], but it requires costly estimation of a
p(TP|x) histogram for each iterative improvement of the RxC
model. Ma and Dinner [9] proposed a method based on
neural networks (denoted the GNN method) to determine the
functional dependence of pB on a set of coordinates, and a
genetic algorithm that selects the combination of inputs that
yields the best fit via the estimation of pB histograms [69–71].
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The collection of configurations for the database is taken
from transition pathways, for instance harvested with TPS.
Although the GNN method provides the advantage that a
very large pool of possible RxCs can be efficiently searched
without the need to redo the path sampling (with an improved
order parameter), the computational cost for the calculation
of the committor values for a sufficiently large database is
very expensive. Maragliano et al [63] combined a string
method with TPS to determine the MFEP. Their approach
presumes that transitions are most likely to occur around the
MFEP and thus isocommittor surfaces are determined therein.
However, this approach requires many iterations of the mean
force and variable entanglement calculations [72, 66]. The
majority of these committor-based methods use expensive
histogram calculations, and mainly focus on improving the
trial and error aspects of the pB calculation [7, 10]. This
has led to the development of statistical approaches capable
of determining committor probabilities ‘on-the-fly’ as the
pathways are generated [34, 67, 10].

2.5.1. Likelihood maximization. Peters and Trout [10]
proposed the maximum likelihood (ML) method which, like
the GNN method, screens a set of candidate collective
variables for a good RxC estimate that depends on a few
relevant variables but does not require expensive calculation
of committor probabilities. A simple model for the RxC, e.g. a
lineal combination of the collective variables, is assumed and
used to calculate the likelihood of the model given the shooting
data. The data are built on information about the accepted and
rejected shooting moves accumulated during a TPS simulation.
This is achieved by using a method denoted ‘aimless shooting’
to harvest independent realizations of p(TP|x) or pB. This
aimless shooting algorithm differs from the standard shooting
algorithm (illustrated in figure 1) in: (i) the new momenta
at configuration x (where x is the randomly selected state
from which the shooting move is attempted) need to be
drawn from the Maxwell–Boltzmann distribution rather that
obtained by small perturbation of the old momenta, and (ii)
the shooting points are selected from a small region around
the previous shooting points rather than from the whole path.
This procedure leads to an ensemble of shooting points that
form a normal distribution peaked near the TS. From the TPS
simulation, the configurations of the shooting points are stored
together with the information on whether the trajectories were
reactive (connecting A to B) or not. Then, M collective
variables, q(x) = q1, . . . , qM , are calculated for each of the
collected shooting points and used to calculate the likelihood
of an assumed RxC model (q) in terms of these physical
properties:

q(x) = α0 +
M∑

k=1

αkqk + qTAq. (24)

Here, α j , j = 0, 1, . . . ,m, are the fitting coefficients and
absorb the units from the collective variables, so that q(x) is
dimensionless. Interactions between collective variables are
included by the cross quadratic term in equation (24) where A
is a matrix of adjustable parameters.

The outcome of each shooting move is viewed as
a particular realization of the process whose statistics is
described by p(TP|q): the probability to be on a transition path
given a particular value of the RxC. Therefore, p(TP|q) =
pB(x) is the distribution function model for a good RxC,
which depends on the M collective variables, q(x) [10]; a
general form for the model that is peaked at the value of q
corresponding to the TS and decays to zero away from the
peak [65] is:

p(TP|q) = p0[1 − tanh2(q)], (25)

where p0 is an adjustable parameter. The Bayesian information
criterion is then used to determine significant variables for the
RxC. To this end, a likelihood function which quantifies the
probability of the observed data as a function of the model
parameters is constructed:

L(α) =
∏

x∈acc

p(T P|q(x))
∏
x∈rej

[1 − p(TP|q(x))]. (26)

The products extend over all accepted (acc) and rejected (rej)
shooting points. The log likelihood (in equation (26)) is then
maximized to obtain the optimal parameters (α) that yield the
best RxC model.

Because the likelihood function in equation (26) uses
information over the full range of p(TP|q) values, the RxC
applies at every p(TP|q) along the trajectories. Once the
shooting data are obtained from the TPS-like procedure,
extension of the RxC to include more collective variables does
not require any substantial additional computational effort.
Peters et al [67] have reported further improvements of the
original ML method.

2.5.2. FFS–least square estimation (FFS–LSE) method. The
FFS–LSE approach is related to the ML method [10] for
obtaining RxC models. However, the two main differences
are that FFS–LSE uses a different method for sampling pB

(FFS rather than TPS) and for finding the model (LSE rather
than ML). The FFS–LSE formalism starts by harvesting an
ensemble of typical trajectories for the transition from a FFS-
type simulation (usually the BG scheme) using an initial guess
for the order parameter. An approximate value of pB for each
of the points crossing the interfaces is extracted from their
path connectivity and then used to fit a model for the RxC in
terms of several collective variables, q(x) = q1, q2, . . . , qm .
Standard least squares estimation (LSE) is used to find the
coefficients of the model and an analysis of variance (ANOVA)
is used to determine the significant terms in the model.

Figure 8(a) illustrates schematically the procedure to
obtain pB history from a BG simulation. During the BG run,
the phase space coordinates for all points along all the trial
runs which successfully reach λi+1 from λi are stored together
with information on the connectivity of the partial paths. From
these data, the pB values of any stored point j at λi , pi

B j , can

be estimated from the pi+1
B j values of all connecting points at

λi+1 using recursively:

pi
B j = (1/ki)

N i
j∑

m=1

pi+1
Bm . (27)
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Figure 8. (a) A schematic illustration of the generation of committor
probabilities, pB(λ), via the FFS–LSE method. In this example,
ki = 4, ki+1 = 3, and ki+2 = 2. pn

B j = 1 for all points collected at

λn=B. pi+1
B j for the points j at λi+1 are estimated from equation (27)

as follows: pi+1
B1 = 1/3 × [2/2 + 1/2], pi+1

B2 = 1/3 × [1/2 + 2/2],
and pi+1

B3 = 1/3 × [1/2 + 1/2 + 2/2]. The pi
B1 value for the point 1

at λi is then obtained from: pi
B1 = 1/4 × [pi+1

B1 + pi+1
B2 + pi+1

B3 ] =
1/4 × [1/2 + 1/2 + 2/3]. The TSE is enclosed by the white ellipse.
(b) Predicted pB model derived from the FFS–LSE method for the
motion of a particle on a 2D potential energy surface [32]. The
estimated RxC isolines are shown as dashed (black) lines and
committor values as labels. The 2D potential energy surface is
from [20] and the corresponding free energy landscape is shown as a
colored contour plot where the color scheme changes from red/gray
(highest) to blue/black (lowest) elevations. The initial and final
regions are shown by the squares labeled A and B, respectively.
Adapted from [32].

Hence, pi
B j values are obtained by following the trials that

reached B (where pn
B j = 1) back to λn−1, then following their

connected partial paths back to λn−2, and so on back to A. In
this way, the FFS–LSE method obtains ‘on-the-fly’ estimates
for the pB history from an FFS simulation with an initial guess
for the order parameter. In a second stage, an improved order
parameter is obtained from the collected pB data as follows.
At each stored point where the pB value was estimated, m
candidate collective variables are evaluated and a simple model
for the RxC is assumed:

λ(q) = pB(q) ≈
m∑

k=1

αkqk + qTAq + α0 (28)

where the regression parameters in α j and matrix A have a
similar meaning to that in equation (24). These coefficients are

determined by standard LSE. An ANOVA is then performed
to check the adequacy of the model fit by determining if there
is a statistically significant correlation between the response
variable pB and a subset of the qk collective variables, and
identifying the variables whose coefficients are significant.
These variables are used to construct a simpler RxC model
which is subjected again to LSE and ANOVA analysis.

The FFS–LSE protocol can be iterated, so that the current
best model is used as the λ parameter in a new FFS run to
generate additional pB data to be LSE-fitted to the model of
equation (28) and get an even better estimate of the RxC, and
so on. Moreover, the DFFS scheme (rather than BG) could also
be used to get pB estimates if one only considers points for
which a minimum number of trials runs have been fired [34].
Figure 8(b) shows results from the application of the FFS–LSE
to a particle moving (via BD) on a rugged 2D potential energy
surface. This surface is formed by the superposition of 109
Gaussians functions [20], leading to two well-defined global
minima (basins A and B, respectively) and three local minima
(metastable states). After iterating the FFS–LSE method [32],
it led to a model of the form (28) with several significant high
order terms, i.e. pB ≈ 0.2−1.68x −1.78y−0.06xy+6.06x2+
6.25y2−4.1x3−4.17y3. Such high order terms were needed in
this case to capture the curvature and complex topology of the
pB isosurfaces which, as shown in figure 8(b) exhibit several
disconnected domains.

2.5.3. Sampling optimization for FFS. Even when a good
order parameter is used to partition the phase space in
interface-based methods, the efficiency of the sampling is still
sensitive to the number and position of the interfaces and
to how extensively different interfaces are sampled [4, 35].
Adaptive algorithms have been proposed to optimize the λ
sampling for either the number and position of the interfaces
(i.e. optimized λ phase staging), and/or the number of fired
trial runs per interface [35]. Please refer to figures 3, 4, and 8
for basic definitions.
i. Approach 1: optimizing the {λ} set (staging).

Optimizing the position of the starting interface. The
suitable positioning of the first interface λ0 is crucial: if
λ0 is too close to the initial basin then the crossing points
(which serve as starting points of all trajectories) are abundant
but highly correlated, while if λ0 is too far, then crossing
points are uncorrelated but too costly to generate. If too few
uncorrelated starting points are used, i.e. if the ensemble of
states at λ0 is under-sampled, errors will propagate through the
next interfaces and lead to erroneous transition rate constants.
Ideally, then, the ensemble of stored configurations should be
uncorrelated and distributed over all the phase space sampled
by the characteristic pathways; this can be seen as minimizing
the cost term ‘R’ in equation (15). For this purpose, an
observable property y is identified whose values can be taken
as providing a measure of phase space change that is nearly
‘orthogonal’ to that provided by λ. The correlation of a set of
N measurements of y for states at λ0, can be estimated from
an autocorrelation function, e.g.

ACF(lag) =
N−lag∑

i=1

(yi − ȳ)(yi+lag − ȳ)∑N
i=1 (yi − ȳ)2

(29)
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where ȳ is the average for the complete run in basin A and the
lag is the separation between stored states (in units of number
of consecutive states at λ0). Because this ACF should decay
exponentially, i.e. ACF(lag)α exp(−lag/τλ0), the constant τλ0

provides a measure of the autocorrelation time at λ0. The
simulation time required to obtain an uncorrelated state at λ0 is
approximated by τ ∗ ∝ τλ0 ×�tλ0 , where�tλ0 = 1/�A,0 is the
average simulation time required to reach consecutive points at
λ0 (�̄A,0 is was defined in equation (6)). By minimizing τ ∗,
one reduces the simulation time (in basin A) needed to obtain
a preset number of uncorrelated points at λ0. The optimum
location of λ0 can then be determined by the minimum of the
τ ∗ versus λ0 curve (this curve can be constructed from a single
run in basin A) [73].

Optimizing the position of subsequent interfaces. Assum-
ing that λA = λ0 and λB are fixed, the variance in P(λn=B|λ0)

can be reduced by minimizing equations (17) and (19) for the
DFFS and BG scheme, respectively; with the constraint that
P(λn=B|λ0) = ∏n−1

i=0 P(λi+1|λi) (i.e. equation (7)) must re-
main constant. This leads to [35]:

Mi P(λi+1|λi ) = N (i)
s = Ns = constant, (30)

i.e. a constant flux of reactive trajectories between interfaces is
desirable. Equation (30) is applicable to both DFFS and BG
schemes even though the objects to be minimized are different.
Also, for Mi P(λi+1|λi ) to remain constant in a BG simulation
(where Mi is given by equation (10)), ki has to be chosen
such that k0 = Ns/P(λ1|λ0) and ki = 1/P(λi+1|λi ) for
0 < i < n where Ns is the desired number of partial paths
between interfaces.

Since equation (30) does not fully constrain the values
of P(λi+1|λi) (as M values can be adjusted), one has some
freedom in choosing them; e.g. for the particular case that it
is desired to have a uniform distribution with P(λi+1|λi ) =
constant for i = 1, 2, . . . , n − 1, then

P(λi+1|λi ) = [P(λn |λ0)]1/n. (31)

To get a new {λ′} staging, a special function f of
P(λi+1|λi ) is constructed (with the current P(λi+1|λi ) versus
λ data) to interpolate the new {λ′} set corresponding to the
desired distribution of P(λi+1|λi ) values. This f function is
not unique but should provide a one-to-one correspondence
between an f value and a λ value; one such choice is [35]

f (λi ) = ln[k(λA → λi )]
ln[k(λA → λB)]

=
∑i−1

j=0 ln P(λ j+1|λ j)∑n−1
j=0 ln P(λ j+1|λ j)

, i = 1, . . . , n (32)

where the denominator is simply a constant. The function
in equation (32) monotonically increases with λ, going from
f (λ0) = 0 to f (λn = λB) = 1. Therefore, the algorithm
consists of (1) running FFS to get Ps for given λs and construct
the f curve, and (2) using the f curve to obtain new λ values
for the desired set of {P(λ1|λ0), P(λ2|λ1), . . . } values (one
iteration provides suitable convergence of the λ staging) [35].
For the choice of equation (31), equation (32) reduces to

Figure 9. Initial and optimum λ staging for the system of a particle
moving in a two-dimensional energy potential [35]. The color
scheme changes from the highest (black) to the lowest (white)
elevations. The initial and final regions are shown by the circles
labeled A and B, respectively. The initial λ staging for the FFS-type
simulation is shown by dotted lines (blue/black). The optimized {λ′

i}
set was obtained for the prescribed values of P(λi+1|λi) =
[P(λn|λ0)]1/n , where n = 9 is the number of interfaces. The thick
line (red/gray) shows the optimized {λ′

i } staging. Note that interfaces
are concentrated in the region preceding the transition state (TS),
i.e. in the ‘bottleneck’ of the simulation. In the free energy surface
contour plot, the TS is visually identifiable at λ = x = 0 where
pB = 0.5 (x is the x-coordinate). Since P(λn=B|λn−1) = 〈pB〉λn−1 ≈
0.44, λn−1 is located a little before λ = x = 0 (the TSE region).

f (λi ) = i/n, for 1 < i < n (with λ′
0 = λ0 and λ′

n = λn

remaining fixed), i.e. the intermediate λ interfaces are to be
distributed in such a way that � f = f (λi+1) − f (λi ) = 1/n
is constant. This case is illustrated in figure 9, showing that
the method identifies the ‘bottleneck’ of the FFS simulation
wherein sampling is automatically concentrated. Note that
rather than fixing n (the number of interfaces) in equation (31)
and computing P(λi+1|λi ), the latter could be specified and the
value of n calculated.

Individual interfacial points at the corresponding λi will
have similar pB values when the order parameter is a good
estimate or the true RxC of the system. Based on this, the {λ′

i }
set could be optimized by distributing the P(λi+1|λi ) values,
trying to target prescribed values of the average 〈pB〉λ for a
given interface obtained from [35]:

〈pB〉λi =
n−1∏
k=i

P(λk+1|λk) (33)

13



J. Phys.: Condens. Matter 21 (2009) 333101 Topical Review

such that the FFS sampling is concentrated in the desired
region (i.e. near the TSE). More generally, both λ-sampling
and order parameter optimization (via FFS–LSE) could be
combined, such that in each iteration the λ staging of the
current order parameter is optimized and used to obtain a
new estimate for the RxC until a satisfactory convergence is
attained (e.g. until the TS isosurface, pB = 0.5, coincides
with the 〈pB〉λ = 0.5 interface from the staging optimization).
Indeed, the optimization of λ staging can significantly reduce
the computational effort of the FFS–LSE method in screening
suitable RxC models [35].

The strategy to optimize the staging discussed here
could be extended to any other interface-based path sampling
methods (e.g. milestoning methods, TIS, or PPTIS) [35].
Interestingly, the WE method (section 2.4.1) was formulated to
maintain a constant flow of partial reactive trajectories in each
window, consistent with the idea underlying equation (30).
ii. Approach 2: optimizing the trial runs {Mi } set.

Assuming that the λ staging has already been fixed, the
statistical ν error in the estimate of kA→B, or equivalently the
variance in the probability P(λn=B|λ0), can be minimized by
optimizing the number of trial runs Mi or ki at each interface
for a fixed computational cost. For the DFFS (BG) scheme,
the optimized {M ′

i }[{k ′
i}] set is then found by choosing the

Mi [ki ] values such that equation (17) ((19)) is minimized
with the constraint that the cost given by equation (19)
((20)) remains constant (terms R and S in equation (15)
are assumed constant). For example, for the DFFS scheme,
varying the distribution of Mi values, and assuming that
[1 − P(λi+1|λi)]Mi ≈ 0, this procedure leads to:

Mi ∝ P(λn |λ0)

(
1 − P(λi+1|λi )

P(λi+1|λi)

)1/2

(P(λi+1|λi )[λi+1 − λi ]
+ (1 − P(λi+1|λi))[λi − λA])−1/2. (34)

To implement equation (34), one of the Mi values is fixed to a
desired value M (i.e. M0 = M) and sets the computational cost
of the DFFS simulation. Additional expressions for optimizing
{M ′

i } for DFFS and for optimizing {k ′
i} for BG are given in [35].

To achieve a larger combined optimization effect, one can
optimize first the staging (approach 1) for a specific prescribed
set of P(λi+1|λi ) values, and then optimize for the {Mi } set
(approach 2) [35].

3. Applications

3.1. General biological applications

The appearance of rare event processes in biological systems
has long been recognized to be a fundamental difficulty
for computational studies of their dynamic and equilibrium
behavior. The use of path sampling methods is thus becoming
an almost indispensable tool to properly account for the
ubiquitous separation of time and length scales, typically
spanning several decades, caused by pervasive entropic or
energetic barriers; the application of TPS-based methods
has indeed allowed the unveiling of fundamental transition
mechanisms not predicted before by other computer simulation
methods [9, 74]. A recent account of the status of the

field concerning biological problems has been presented
by Dellago and Bolhuis [7], where a broad range of
applications was already identified, including: biomolecular
isomerization [75, 9, 63], protein folding [6, 76–78, 8, 74],
DNA base pair unbinding [79], enzyme catalysis [80–83], lipid
bilayers [84, 85], and biochemical network switches [5, 30].
Here an update to that previous review is provided, in which
both earlier and some of the newer methods described above
are used.

3.1.1. Protein folding. The kinetics of the transition pathways
for the folding mechanism of a single chain protein in open
and in confined spaces was evaluated using the FFS framework
with coarse-grained lattice models [86]. This work showed
how the rapid initial formation of a critical core of amino acids
affects the global properties and the folding mechanism of a
single chain protein. The critical core is formed by those
residues that have a higher chance of being in contact in the
transition state [87, 88]; these residues can vary depending on
the confinement conditions of the protein. Their observation
regarding the importance of the formation of key transition
state intermediates is consistent with the nucleation folding
mechanism in proteins. The results from this work were
used by Contreras et al [89] in a computational study of the
reassembly process of split proteins (i.e. how two fragments of
a protein reconstitute the original folded structure). They found
that the way in which the critical nucleus is fragmented plays a
key role in the reassembly kinetics and mechanism; e.g. the two
fragments reassembled more efficiently if the critical nucleus
was fragmented in roughly equal parts which then acted as a
catalytic ‘glue’. The FFS–LSE approach was also applied to
estimate a good RxC for the folding transition of model lattice
proteins [75]. It was found that pB could be well approximated
via a model linear on conformational energy and number of
native contacts.

The application of path sampling methodologies to the
problem of two-state kinetics in all-atoms protein folding,
recently reviewed by Bolhuis [90], has yielded relevant insights
into the (un)folding mechanisms and reaction rates of the Trp-
cage in aqueous solution [8, 31]. This Trp-cage is a model
mini-protein designed to yield fast folding rates accessible to
computer simulations, but containing enough complexity to be
a good test for path sampling algorithms. A more detailed
account of this system and the different TPS-based methods
used to study it are presented in section 3.2.2.

The folding pathway of a 54-residue polyglutamine chain
into a β-helical structure, in both explicit and implicit solvents,
was studied by Chopra et al [91] using constant path TPS
MC simulations [15]; this system, unlike the one studied
by Juraszek and Bolhuis [31], lacks higher order (tertiary)
structure formation. The pathway of β-helical structure
formation was characterized by the formation of bridging
hydrogen bonds between the coils, which nucleate primarily
at the turns and drastically break the solvation hydrogen
bonds; the same pattern of structure formation was observed
in the implicit solvent case. Analysis of the TSE in both
directions, folding and unfolding, revealed that contacts
located at the corner of the helical coils control both reactive
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pathways; this was seen in both implicit and explicit solvents.
Remarkably, the TPS analysis of this study found that at least
36 residues are necessary to stabilize the β-helical structure
of polyglutamine sequences, which is consistent with the
experimental evidence that correlates the presence of fibrils
of expanded polyglutamines (i.e. those having more than
∼36 residues) in samples of neuronal cells affected with
neurodegenerative diseases.

3.1.2. DNA melting and base pair stability. Transitions
between double- and single-stranded states of DNA were
investigated by Sambriski et al [92] by means of TPS
simulations on a model where DNA nucleotides are coarse-
grained to three sites (phosphate, sugar, and nucleobase).
The dynamics between duplex melting and its reverse
process, i.e. renaturation, involves not only a complex
interplay of backbone conformation and strong short-ranged
directional pairing and stacking interactions, but also spans
across large timescales. The TSE was identified, using
the committor probabilities, for two short oligonucleotide
fragments (14 and 15 base pairs) having different degrees
of sequence heterogeneity and guanine–cytosine base pair
content (repetitive and random, respectively). For the random
sequence, the TSE occurs at a low value of the extent
of reaction with a narrow (specific) probability distribution,
whereas the repetitive sequence exhibits a largely broad
(nonspecific) distribution. This behavior was shown to be
correlated with the location of the nucleation base pairs for
conformations belonging to the TSE. The association pathway
of the random sequence was shown to use fewer but localized
base pairs, whereas that of the repetitive sequence involves a
large number of possible shifted base pairs; nevertheless, the
central base pairs associate preferentially in both cases.

Another problem of interest, involving base pair binding
and unbinding transitions, is that of enzymatic repair of
DNA lesions to maintain the stability of DNA replication and
transcription processes [81]. A fundamental step in the repair
of a localized lesion along double-helical DNA involves the
opening of the base pair containing the lesion by flipping the
damaged base. The process of lesion recognition by the O6–
alkylguanine–DNA alkyltransferase (AGT) and the forces that
later promote flipping of a methylated guanine were studied by
Hu et al [93] using TPS simulations with bias annealing [22].
Path sampling allows one to capture the correct dynamics of the
rare base flipping event, otherwise inaccessible to direct MD
simulations, which occurs scarcely on the order of milliseconds
even in the presence of the protein. Relevant RxCs for
this process were found with a genetic network approach in
terms of the committor probabilities [9]; a complex RxC was
identified relating specific atomic distances in the active site
of the DNA–enzyme complex. Comparing the features of
the TSE for AGT-induced flipping of guanine (intact base) or
methylguanine (alkyl lesion) allowed the identification of a
kinetic ‘gate-keeping’ strategy for lesion discrimination via a
two-state process in which the methylguanine exhibits a faster
rate of flipping to the active site and a slower rate of flipping
back to the base paired state; this mechanism re-formulates a

previously proposed one based on energetic stabilization of the
flipped lesion.

A related process involving the bypass of an oxidative
lesion during DNA polymerase β (pol β) replication was
addressed by Wang and Schlick [94] with TPS simulations.
In this bypass strategy, pol β has been shown to prefer
the insertion of a correct nucleotide (dCTP) instead of an
incorrect one (dATP) when replicating the complement of
an 8-oxoguanine (8-oxoG) damaged base; this selection is
controlled with large precision even when dATP and 8-oxoG
form a stable base pair much like a correct Watson–Crick
G:C base pair. Different order parameters, in terms of
molecular coordinates, were considered in the TPS simulations
for the pairing–unpairing transition of both dCTP:8-oxoG
and dATP:8-oxoG base pairs. The identification of relevant
molecular conformations of the transition states and transition
pathways, as well as estimates of the reaction rate constants,
allow one to recognize the unfavorable interactions leading
to a lower insertion efficiency for dATP compared to that of
dCTP; further kinetic and energetic effects favoring the pairing
of dCTP were also found.

3.1.3. Biomolecular isomerization. The classical example
of alanine dipeptide isomerization will be discussed in
section 3.2.1. In this section, recent studies of other
prominent problems involving conformational transformations
of biomolecules will be reviewed. Such is the case of
the isomerization in vacuum of the methyl β-D-maltoside
(disaccharide) between two of its four stable conformations,
in terms of its φ and ψ dihedral angles, studied by Dimelow
et al [95]. In this work, the results from a TPS simulation were
compared with those from a less computationally expensive
potential of mean force (PMF) calculation. Although the
two approaches were shown to be complementary, the former
generated a more complete view of the relevant reaction
mechanisms that included an additional reaction channel not
predicted by the PMF simulations. This study also highlights
the ability of TPS to discriminate the specific intramolecular
interaction leading to different transition pathways. By using
committor probabilities, the TSE was identified and found to
be consistent with the free energy landscape barriers along the
(φ,ψ) coordinates.

The two-state allosteric conformational transition of the
nitrogen regulatory protein C (NtrC) has been studied indepen-
dently by Pan et al [96] with a modified implementation of the
FTS in collective variables [63] and by Khalili and Wales [97]
using the discrete path sampling method [98]. The biological
activity of NtrC, involved in bacterial signal transduction, is
controlled by the phosphorylation of an aspartate residue which
modulates the population of the active conformation from 2
to 10% in the unphosphorylated form to 99% in the phospho-
rylated one. In the work by Pan et al [96], a coarse-grained
elastic two-state network was used to constraint the dynamics
to transitions between the inactive and active states. Simula-
tions of this model using the modified FTS method allowed
precise determination of a transition state having a pB ≈ 0.5
isocommittor pathway, corresponding to the free energy bar-
rier; for this purpose a complex multidimensional space ac-
counting for more than 550 collective variables (inter-residue
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distances) was considered. The discrete path sampling study
by Khalili and Wales [97] on this same system at the atom-
istic level in implicit solvent also identified kinetically relevant
pathways by which this large scale conformational transition is
achieved. This method, although not guided by the help of the
isocommittor probabilities, allows selection of a suitable set of
order parameters using disconnectivity graphs of the potential
energy landscape for both active and inactive conformations.
Then, an enumeration algorithm was used to locate the acti-
vation pathway (having the dominant contribution to the re-
action rate) containing specific displacements, rotations, and
(de)stabilization interactions of residues that were largely cor-
related with experimental observations.

The allosteric activation mechanism of another signaling
protein, the Escherichia coli chemotaxis Y protein (CheY),
was studied using TPS on an all-atom model in explicit
solvent by Ma and Cui [99]; this protein is also activated
by phosphorylation. In this case, the phosphorylated residue
is displaced by the formation of a hydrogen bond, which
in turn makes the isomerization of a neighboring residue
from a solvent exposed configuration to a buried rotameric
state sterically possible. A large set of reactive trajectories
was generated from path sampling simulations that used an
initial state with pB close to the transition state; the analysis
of the TPS simulations was complemented with free energy
landscapes generated with umbrella sampling. This led to
the identification of an alternative pathway that is kinetically
competitive with respect to the one mentioned above; this
new pathway is remarkable in that it does not require the
formation of the hydrogen bond in the phosphorylated residue.
The combination of free energy and TPS results was also
crucial in identifying an alternative dynamics for a ‘loop
gating’ mechanism better correlated to experimental evidence
than a previously proposed one based purely on biased MD
simulations.

3.1.4. Enzymatic catalysis. The previous TPS study by
Basner and Schwartz [80] on the enzymatic reaction catalyzed
by the lactate dehydrogenase (LDH) was reassessed recently
on the basis of committor distribution analysis by Quaytman
and Schwartz [100]. The former work identified reactive paths
where residues outside the active site exhibit significant motion
that seemed to provide additional stabilization to the donor–
acceptor atoms; this hypothesis, however, was not proven
to be correlated with the RxC. The latter study confirmed
that these motions indeed make a significant contribution to
the catalytic activity of LDH. This finding was validated by
appropriately selecting a RxC (dependent on the displacement
external residues mentioned above) which exhibited a peaked
committor distribution at pB = 0.5. Similarly, Schwartz et al
[101] studied the mechanistic dynamics of another enzymatic
reaction, the phosphorylation of guanosine catalyzed by the
human purine nucleoside phosphorylase (PNP), using TPS
simulations and committor probabilities. Similar to the
behavior observed in the LDH study [80, 100], the kinetic
details of the reactive trajectories obtained in this study also
showed that the motions of protein residues outside the active
site are directly coupled to the TSE and make significant

contribution to the RxC. In this case, even fast motions were
seen to be a critical part of the transition state, showing that the
timescale of these motions need not be the same as that of the
enzymatic reaction to contribute to the rate constant.

In a similar study, the enzymatic conversion of chorismate
into prephenate, catalyzed by chorismate mutase, was
characterized by Crehuet and Field [102] in terms of the
TSE using TPS and committor probabilities. This particular
reaction is a test model for computational studies but the
interpretation of results from previous investigations has
yielded several mechanistic contradictions. In addition to
providing new insights into the reactive transition pathways,
the path sampling analysis also revealed that, similarly to
LDH and PNP, chorismate mutase exhibits motions of protein
residues that cause conformational compression during the
reaction and play an important role in TSE. In this work,
the capabilities of TPS simulations to capture the correct
dynamics of reactive trajectories were found adequate to
address a problem that includes a large and complex space
of collective variables; although the committor analysis failed
to provide a relevant RxC. Accurate predictions of reaction
rates, however, seem to be out of the reach of TPS simulations
for such cases, as that would require exceedingly expensive
computations.

3.1.5. Genetic switches. FFS is particularly advantageous
in the study of oscillatory biochemical networks due to the
nonequilibrium nature of the rare switch flipping events. Two
models of bistable genetic switches have been investigated
recently by Valeriani et al [33] and Morelli et al [103] using the
FFS method [5]. The two models studied describe the action of
two genes that repress mutually and encode two transcription
factors (proteins); the production of both transcription factors
(A and B) is controlled by their binding in homodimeric form
(A2 and B2) to a regulatory DNA sequence (O). In one model,
the exclusive switch, the two factors mutually exclude each
other’s binding, whereas in another, the general switch model,
both factors can bind simultaneously; a network of biochemical
reactions describe the kinetic behavior of the switches. The
switching pathways obtained for both models from FFS in
combination with committor distribution analysis, yielded a
complex dependence on transcription factor homodimerization
and their DNA binding and unbinding reactions. For the
exclusive switch, the TSE revealed a strong dependence on the
latter but not on the former, whereas the switching pathways
of the general switch are largely independent of fluctuations in
the rate constants of both reactions.

More recently, Morelli et al [104] studied via FFS the
bistable gene regulatory switch controlling the transition from
lysogeny (dormant state) to lysis (lytic state) in bacteriophage
lambda. The model adopted encompassed several hundred
reactions that included DNA looping, the detailed dynamics
of binding of transcription factors to the promoters, and gene
depletion by nonspecific binding. By taking into account the
stochastic character of the chemical reactions, these authors
were able to reproduce the bistability of the switch and to find
evidence that DNA looping provides a likely explanation for
the puzzling stability and robustness (experimentally observed)
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Figure 10. Frontal view of the system used to simulate the
flow-induced translocation of DNA through a rectangular pore [106],
depicting three snapshots of a 420 μm DNA molecule at different
stages during the translocation.

of the lysogenic state to perturbations of the transcriptional
regulatory interactions.

3.1.6. Biopolymer translocation and motion through pores.
The transport of a biopolymer through a nanopore is a
phenomenon that occurs in several important biological
processes such as in the passage of proteins through the
ribosomal tunnel (during protein synthesis), the protein
entrance to and departure from chaperone cavities, the motion
of oligomeric species through cell transmembrane protein
pores, and the insertion of genetic material by viruses. Several
nascent biotechnological techniques also rely on biopolymer
translocation, including microfluidic devices designed to
separate or to sequence DNA. These processes are typically
unidirectional and rely on the aid of an external driving force,
such as flow, a motor protein, or an electric field. The
nonequilibrium nature of the process makes FFS again an ideal
tool for kinetic studies. This was recognized very early by
Allen et al [4, 5] who demonstrated the use of FFS to study
a simple model of polymer translocation through a pore. In
that study, the chain was modeled by mutually attracting beads,
chain motion was evolved via Langevin dynamics, and the
pulling force was assumed to be intermittent so that in the
‘on’ state all monomers inside the pore experienced a forward-
directed force, and in the ‘off’ state no external force was
exerted (such an action could be seen as a simplistic analog to
that of a motor protein). Despite this auspicious beginning and
the multitude of interesting related processes, applications of
FFS to biopolymer motion through pores are still scant (two
examples are discussed below); most often, such problems
have been studied via conventional MD, BD, and MC methods.

In a recent paper, Huang and Macarov [105] studied the
dependence of the timescale of polymer reversal on the pore
size and on the polymer length. The system consisted of an
unstructured, flexible chain inside a neutral, infinitely long
cylindrical pore. They compared the predictions of simple
one-dimensional theories (like TS theory) and exact FFS–
BD simulation results in describing the reversal rate constant.
More recently, Hernandez-Ortiz and de Pablo [106] used
FFS to quantify the effect of hydrodynamics on the flow-
induced translocation rate of DNA molecules through a narrow

Figure 11. Stable states defining the reactions for the bimolecular
isomerization of alanine: C7eq ⇔ C5 and C7eq ⇔ C7ax transitions in a
vacuum (dotted lines) and C5/C7eq ⇔ β2/αR transitions in explicit
solvent (solid lines).

pore. The setup and dimensions of this system are depicted in
figure 10; long DNA molecules (ranging from 10 to 420 μm)
were modeled as flexible bead–spring chains with repulsive
beads and their motion described by a BD scheme that
incorporates hydrodynamic effects under confinement. The λ
interfaces were defined as parallel planes perpendicular to the
flow direction and located at specific distances along the pore;
the chain was assumed to reach an interface when its chain
center of mass crossed it. This study found that hydrodynamic
forces can either accelerate or hinder translocation (depending
on DNA molecular weight) by many orders of magnitude, thus
emphasizing the limitations of the free-draining approximation
(which ignores hydrodynamic interactions) in the modeling of
such processes and in the interpretation of experimental data.

3.2. Illustrative cases

3.2.1. Isomerization of alanine dipeptide. Alanine dipeptide
is a small molecule that in an aqueous environment displays
short-timescale transitions between conformations typical of
α-helix and β-strand motifs in proteins [107]. Figure 11
shows a schematic representation of the main conformers
involved in the transitions of this peptide projected onto ψ
and φ dihedral angles in a vacuum and explicit solvent. In
a vacuum, the free energy landscape shows three distinct
stable basins corresponding to states C7ax, C7eq and C5. In
an explicit solvent, the free energy landscape shows several
minima in which the β2/αR ⇔ C5/C7eq transition is one
of the most studied. Various researchers have estimated
transition rate constant values for the forward [107, 108, 49]
and reverse transitions in a vacuum and explicit solvent
environment [75, 107], as well as the collective variables that
are important for the description of the transitions [75, 9, 49].

Figure 12 compares some of the rate constant estimates
found in the literature. For example, in a vacuum, Chun
et al [109] and Vedell and Wu [110] estimated the kinetic
C7eq ⇒ C5 transition time to be around 3.0 ps. The
former study used both atomistic MD simulations and a rigid
body MBO(N)D [108] method using a CHARMM force field,
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Figure 12. Comparison of the rate constant estimates for the isomerization of alanine dipeptide in vacuum (black bars) and explicit solvent
(gray bars). The x-axis corresponds to the reference number.

while the latter used a multiple shooting algorithm with a
MOIL-based force field. More recently, Velez-Vega et al
[73] estimated a 4.0 ps transition rate time for the same
reaction using both atomistic FFS–MC and MD simulations
with a CHARMM force field. The results from both FFS-
type simulations were similar and consistent with those found
in the literature [75, 107, 108, 49]. These authors employed
a FFS–MD scheme by incorporating a stochastic component
(associated with an Andersen-type thermostat [111]) into the
MD simulation to achieve distinct pathways between the stable
states.

The fast β2/αR ⇒ C5/C7eq reaction in explicit solvent has
been simulated in several studies. For example, Chekmarev
et al [107] used BD and an analytic generalized Born with
nonpolar interactions (AGBNP) implicit solvent model with an
OPLS force field to obtain a mean first-passage time of 27 ps.
In other study, Oliveira et al [108] estimated a transition time
of 80 ps using accelerated MD simulations with an AMBER
force field in explicit solvent. More recently, West et al [49]
and Velez-Vega et al [73] determined the transition rate for
the same transition using path sampling methods. The former
found a mean first-passage time of 64 ps via the milestoning
method using the MOIL package, whereas the latter obtained
a 31 ± 6 ps transition time via FFS–MD simulations using
the CHARMM force field. For the slow C5/C7eq ⇒ β2/αR

reaction, Chekmarev et al [107] calculated a mean first-passage
time of 249 ps using BD and the AGBNP implicit solvent
model with an OPLSAA force field. However, Bolhuis et al
[75] estimated a rate constant of 100 ps using TPS with an
AMBER 94 force field, while Velez-Vega et al [73] estimated
a rate constant of 328 ± 62 ps using FFS–MD simulations
with the CHARMM force field. A general conclusion from
the above works is that path sampling simulations provide
a practical way to estimate rate constants for the transitions
compared to conventional methods, but the results typically
have large errorbars and are highly sensitive to the details of
the force field.

Although the dihedral angles ψ and φ of the peptide
satisfactorily describe the system’s distinct stable states
(as seen in figures 12 and 13), this does not imply
that they are accurate descriptors for the dynamics of the
transition [75, 9, 49]. Thus, other variables and/or interaction
terms between variables may also be important in the RxC

Figure 13. Results from FFS–MD simulations for the C7eq ⇒ C5
transition of alanine dipeptide in a vacuum at 300 K over the ψ–φ
plane. The color scheme for the underlying free energy landscape
changes from highest (gray/light yellow) to lowest (black/dark red)
elevations. The solid (black) lines correspond to particular interfaces
of the initial order parameter λ = ψ : 80 (state A upper limit) and
150 (state B lower limit). The dashed lines correspond to the λ = pB

isocommittor surface as computed from the FFS–LSE method
(adapted from [73]).

model. For example, Bolhuis et al [75] used a conventional
committor analysis [15] and found that for the C7eq ⇒ C7ax

isomerization in vacuum, other variables besides the ψ and φ
angles are necessary, suggesting that adding the θ (O–C–N–
Cα) angle could provide a reasonable description of the RxC.
The string simulations performed by Maragliano et al [63]
suggested that including the ζ(Cα–C–N–H) angle in addition
to ψ , φ, and θ is required to make the committor distribution
peak at the correct value. Ma and Dinner [9] also estimated
the collective variables that are important for the description of
the C7eq ⇒ C7ax isomerization reaction in vacuum using their
genetic neural network method. Their results confirm that a
RxC in term of three of the main dihedral angles correlates
strongly with the committor probability distribution. More
recently, Velez-Vega et al [73] used the FFS–LSE algorithm
and found that the order parameters ψ and φ are sufficient for
predicting the dynamic pathways of the C7eq ⇒ C5 transition;
however, an interaction term between these variables (i.e. ψφ)
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Figure 14. Illustration of the two major routes between the native and unfolded states for the (un)folding of Trp-cage mini-protein. This
sketch is based on figure 1 in [31].

and quadratic terms (i.e. ψ2 and φ2) are also necessary for
a complete description of the curvature of the isocommittor
surface. Isocommittor lines for this transition are shown in
figure 13.

For the β2/αR ⇔ C5/C7eq transition in explicit water,
Bolhuis et al [75] used conventional committor analysis [15]
to find that the solvent degrees of freedom may play a role
in this transition and suggested their incorporation in the RxC
model of the process. Using a large pB database and a genetic
neural network method, Ma and Dinner [9] determined that the
best RxC model is composed of three descriptors: the ψ angle,
the distance between atoms 2H and 2Cβ(|r2H−Cβ |), and the
electrostatic torque around bond 1C–2N from solvent forces on
atom 3H (�3H

1C−2N). Velez-Vega et al [73] used the FFS–LSE
algorithm to determine that a simpler linear model involving
the dihedral angles ψ and φ, and the quantities |r|2H−Cβ | and
�1C−2N3H provided a reasonably complete description of the
system’s dynamics. However, for the reverse C5/C7eq ⇒
β2/αR transition, it was found that in addition to the linear
terms in those variables, nonlinear interaction terms between
them were needed for a better description of the isocommittor
surfaces [73]. A general consensus of these studies is that
although the angle ψ seems to be a key component of the
RxC, other variables, including some associated with solvent
degrees of freedom, play a non-negligible role in the TS for
isomerizations in water.

3.2.2. Trp-cage mini-protein (un)folding. The Trp-cage pro-
tein is a 20-residue polypeptide chain (NLYIQWLKDGGPSS-
GRPPPS) designed by Neidigh et al [112] to fold via a two-
state process. Its native structure contains both secondary
and tertiary structures having a hydrophobic core in which

Trp-6 is buried. Although the folding events of the Trp-cage
have been studied using all-atom solvent-implicit MD simula-
tions, coarse-grained models, and replica exchange MD simu-
lations [113–116], it is the all-atom solvent-explicit TPS sim-
ulations performed by Juraszek and Bolhuis [8] that have fully
elucidated the mechanism through which this protein folds.
These authors [8, 31] employed the OPLSAA force field and
the SPC water model to obtain the TPE in a simulation time of
several microseconds. They found that this mini-protein folds
through two distinct mechanisms (as depicted in figure 14):
(i) a diffusion–collision route where secondary structure ele-
ments fold before the tertiary structure and (ii) a nucleation–
condensation mechanism where a tertiary structure nucleation
event precedes the formation and stabilization of the secondary
structures. The latter mechanism (i.e. the N–L–U route) was
found to be the predominant folding route (i.e. 80% of the
paths follow this route). On the basis of committor calcula-
tions, piece-wise RxCs were found between the basins and the
transition states on each route. This study demonstrated that
TPS is indeed capable of capturing entirely different paths in
a complex system [8], and a second study from the same au-
thors [31] compared rate constants for the folding and unfold-
ing of the Trp-cage protein in explicit solvent using TIS and
FFS. In particular, they studied the major (N–L–U) unfolding–
folding route which contributes most to the rate constant. The
root mean square deviation of the α-helical (2–8) residues from
an ideal helix (rmsdhx) was used as an order parameter to parti-
tion the phase space. From the TIS simulations, they estimated
the rates for folding and unfolding to be kLN = (0.4 μs)−1

and kNL = (1.2 μs)−1, respectively, which are about one order
of magnitude higher than the experimental values. In contrast,
they found that the rate constant for the unfolding transition ob-
tained from FFS simulations (kNL = (100 μs)−1) was a factor
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of 80 smaller than the one obtained with TIS. In this case, the
paths sampled by FFS bunched up along a non-representative
route resulting in the overestimation of the free energy barrier
and hence underestimation of the rate constant. The authors
argued that, compared to TIS, FFS is likely to be more sensi-
tive to the choice of the order parameter and has more difficulty
relaxing the pathways in directions orthogonal to the imposed
order parameter. This highlights the importance of thoroughly
optimizing the implementation of FFS (something that was ar-
guably limited in [31]), making use of various strategies such
as those described in sections 2.5.2 and 2.5.3. In particular, the
use of a better order parameter (closer to the RxC) to define the
λ space, and of an optimized positioning of the first interface
are likely to vastly improve the performance of FFS for this
system.

Juraszek and Bolhuis [31] also applied the ML method for
the L–N TPE obtained from the TPS simulations [8] to obtain a
better estimate for the RxC. They found that a combination of
the rmsdhx and the root mean square deviation from the native
α-carbons (rmsdca) provided a good description of the local
dynamics. On the other hand, for the L–N TPE a single RxC
model in terms of rmsdca was enough to describe the transition.

4. Conclusions

The last few years have witnessed a rapid increase in the
number of path sampling methods and a wider range of
applications to biological and physico-chemical systems. This
trend is only expected to accelerate in the years to come
as these methods become more refined, computers get faster
and cheaper, and more experience (and wisdom) is gained
on how to avoid pitfalls and make the most out of a given
method. While many of these advances lie outside the
scope of this review, we have attempted to convey some of
this collective experience as it pertains to a subset of path
sampling methods and applications to biomolecular transitions.
By understanding the core concepts underlying some of
the competing methods, similarities and differences among
them can be better appreciated, which in turn can lead to
further methodological improvements, cross-fertilization, or to
a clearer view of instances when two different methods become
complementary.

As expected, our review of recent applications contains
still many more examples of the use of the older, more
established methods (like TPS), rather than of the use of the
newer or less known methods we have tried to highlight here
(for which often only proof-of-principle calculations exist).
Altogether though, it is clear that path sampling methods
are becoming more sophisticated and are already tackling
challenging systems and unraveling new mechanistic details
of important biomolecular processes. On the other hand,
methods employing accelerated dynamics and other time-
saving strategies (like coarse graining) will be needed to study
the countless biological systems that not only entail very
many degrees of freedom, but also exhibit a multiplicity of
intermediates and transition channels, and span very broad
timescales. It is important to keep in mind, however, that
the successful implementation of novel path sampling methods

(and of forward flux sampling in particular) crucially depends
on the careful selection of the method’s parameters; this
selection should not be based only on experience or ‘art’
but also on systematic optimization strategies such as those
discussed in this review.

Acknowledgments

This publication is based on work supported in part by award
no. KUS-C1-018-02, made by King Abdullah University
of Science and Technology (KAUST). Additional support
from the National Science Foundation Award 0553719 is also
gratefully acknowledged. The authors are also grateful to
J Hernandez-Ortiz and P Bolhuis for allowing us to modify
their picture files.

References

[1] Sethuraman A, Vedantham G, Imoto T, Przybycien T and
Belfort G 2004 Protein unfolding at interfaces: slow
dynamics of α-helix to β-sheet transition Proteins: Struct.
Funct. Bioinform. 56 669–78

[2] Tsumoto K, Ejima D, Kumagai I and Arakawa T 2003
Practical considerations in refolding proteins from
inclusion bodies Protein Expr. Purif. 28 1–8

[3] Snow C D, Sorin E J, Rhee Y M and Pande V S 2005 How
well can simulation predict protein folding kinetics and
thermodynamics? Annu. Rev. Biophys. Biomol. Struct.
34 43–69

[4] Allen R J, Frenkel D and ten Wolde P R 2006 Forward flux
sampling-type schemes for simulating rare events:
efficiency analysis J. Chem. Phys. 124 194111

[5] Allen R J, Frenkel D and ten Wolde P R 2006 Simulating rare
events in equilibrium or nonequilibrium stochastic systems
J. Chem. Phys. 124 024102

[6] Bolhuis P G 2003 Transition-path sampling of β-hairpin
folding Proc. Natl Acad. Sci. USA 100 12129–34

[7] Dellago C and Bolhuis P G 2007 Atomistic Approaches in
Modern Biology: from Quantum Chemistry to Molecular
Simulations (Berlin: Springer) pp 291–317

[8] Juraszek J and Bolhuis P G 2006 Sampling the multiple
folding mechanisms of Trp-cage in explicit solvent Proc.
Natl Acad. Sci. USA 103 15859–64

[9] Ma A and Dinner A R 2005 Automatic method for identifying
reaction coordinates in complex systems J. Phys. Chem. B
109 6769–79

[10] Peters B and Trout B L 2006 Obtaining reaction coordinates
by likelihood maximization J. Chem. Phys. 125 054108

[11] van Erp T S 2006 Efficiency analysis of reaction rate
calculation methods using analytical models I: the
two-dimensional sharp barrier J. Chem. Phys. 125 174106

[12] Dellago C and Bolhuis P G 2008 Advanced Computer
Simulation Approaches for Soft Matter Sciences III ed
C Holmer and K Kremer (Berlin: Springer) pp 167–233

[13] Dellago C, Bolhuis P G and Chandler D 1999 On the
calculation of reaction rate constants in the transition path
ensemble J. Chem. Phys. 110 6617–25

[14] Dellago C, Bolhuis P G, Csajka F S and Chandler D 1998
Transition path sampling and the calculation of rate
constants J. Chem. Phys. 108 1964–77

[15] Dellago C, Bolhuis P G and Geissler P L 2002 Transition path
sampling Adv. Chem. Phys. 123 1–78

[16] Bolhuis P G, Chandler D, Dellago C and Geissler P L 2002
Transition path sampling: throwing ropes over rough
mountain passes, in the dark Annu. Rev. Phys. Chem.
53 291–318

20

http://dx.doi.org/10.1002/prot.20183
http://dx.doi.org/10.1016/S1046-5928(02)00641-1
http://dx.doi.org/10.1146/annurev.biophys.34.040204.144447
http://dx.doi.org/10.1063/1.2198827
http://dx.doi.org/10.1063/1.2140273
http://dx.doi.org/10.1073/pnas.1534924100
http://dx.doi.org/10.1073/pnas.0606692103
http://dx.doi.org/10.1021/jp045546c
http://dx.doi.org/10.1063/1.2234477
http://dx.doi.org/10.1063/1.2363996
http://dx.doi.org/10.1063/1.478569
http://dx.doi.org/10.1063/1.475562
http://dx.doi.org/10.1002/0471231509.ch1
http://dx.doi.org/10.1146/annurev.physchem.53.082301.113146


J. Phys.: Condens. Matter 21 (2009) 333101 Topical Review

[17] Bolhuis P G 2003 Transition path sampling on diffusive
barriers J. Phys.: Condens. Matter 15 S113–20

[18] Geyer C J and Thompson E A 1995 Annealing Markov chain
Monte Carlo with applications to ancestral inference J. Am.
Stat. Assoc. 90 909–20

[19] Vlugt T J H and Smit B 2001 On the efficient sampling of
pathways in the transition path ensemble PhysChemComm
2 1

[20] Chopra M, Malshe R, Reddy A S and de Pablo J J 2008
Improved transition path sampling methods for simulation
of rare events J. Chem. Phys. 128 144104

[21] Grunwald M, Rabani E and Dellago C 2006 Mechanisms of
the wurtzite to rocksalt transformation in CdSe
nanocrystals Phys. Rev. Lett. 96 255701

[22] Hu J, Ma A and Dinner A R 2006 Bias annealing: a method
for obtaining transition paths de novo J. Chem. Phys.
125 114101

[23] Moroni D, van Erp T S and Bolhuis P G 2004 Investigating
rare events by transition interface sampling Physica A
340 395–401

[24] van Erp T S and Bolhuis P G 2005 Elaborating transition
interface sampling methods J. Comput. Phys. 205 157–81

[25] van Erp T S, Moroni D and Bolhuis P G 2003 A novel path
sampling method for the calculation of rate constants
J. Chem. Phys. 118 7762–74

[26] Bolhuis P G 2008 Rare events via multiple reaction channels
sampled by path replica exchange J. Chem. Phys.
129 114108

[27] van Erp T S 2007 Reaction rate calculation by parallel path
swapping Phys. Rev. Lett. 98 268301

[28] Rogal J and Bolhuis P G 2008 Multiple state transition path
sampling J. Chem. Phys. 129 224107

[29] Moroni D, van Erp T S and Bolhuis P G 2005 Simultaneous
computation of free energies and kinetics of rare events
Phys. Rev. E 71 056709

[30] Allen R J, Warren P B and ten Wolde P R 2005 Sampling rare
switching events in biochemical networks Phys. Rev. Lett.
94 018104

[31] Juraszek J and Bolhuis P G 2008 Rate constant and reaction
coordinate of Trp-cage folding in explicit water Biophys. J.
95 4246–57

[32] Borrero E E and Escobedo F A 2009 Simulating the kinetics
and thermodynamics of transitions via forward
flux/umbrella sampling J. Phys. Chem. B 113 6434–45

[33] Valeriani C, Allen R J, Morelli M J, Frenkel D and
ten Wolde P R 2007 Computing stationary distributions in
equilibrium and nonequilibrium systems with forward flux
sampling J. Chem. Phys. 127 114109

[34] Borrero E E and Escobedo F A 2007 Reaction coordinates and
transition pathways of rare events via forward flux
sampling J. Chem. Phys. 127 164101–17

[35] Borrero E E and Escobedo F A 2008 Optimizing the sampling
and staging for simulations of rare events via forward flux
sampling schemes J. Chem. Phys. 129 024115–16

[36] Huber G A and Kim S 1996 Weighted-ensemble Brownian
dynamics simulations for protein association reactions
Biophys. J. 70 97–110

[37] Dickson A, Warmflash A and Dinner A R 2009
Nonequilibrium umbrella sampling in spaces of many order
parameters J. Chem. Phys. 130 074104

[38] Farkas L 1927 The speed of germinitive formation in over
saturated vapours Z. Phys. Chem. 125 236–42

[39] Hänggi P, Talkner P and Borkovec M 1990 Reaction-rate
theory: fifty years after Kramers Rev. Mod. Phys. 62 251

[40] Northrup S H, Allison S A and McCammon J A 1984
Brownian dynamics simulation of diffusion-influenced
bimolecular reactions J. Chem. Phys. 80 1517–26

[41] Gabdoulline R R and Wade R C 2002 Biomolecular
diffusional association Curr. Opin. Struct. Biol. 12 204–13

[42] Rojnuckarin A, Livesay D R and Subramaniam S 2000
Bimolecular reaction simulation using weighted ensemble
Brownian dynamics and the University of Houston
Brownian Dynamics program Biophys. J. 79 686–93

[43] Zhang B W, Jasnow D and Zuckerman D M 2007 Efficient
and verified simulation of a path ensemble for
conformational change in a united-residue model of
calmodulin Proc. Natl Acad. Sci. USA 104 18043–8

[44] Rojnuckarin A, Kim S and Subramaniam S 1998 Brownian
dynamics simulations of protein folding: access to
milliseconds timescale and beyond Proc. Natl Acad. Sci.
USA 95 4288–92

[45] Fisher E W, Rojnuckarin A and Kim S 2001 Kinetic effects of
mutations of charged residues on the surface of a dimeric
hemoglobin: insights from Brownian dynamics simulations
J. Mol. Struct. 549 47–54

[46] Fisher E W, Rojnuckarin A and Kim S 2002 Effects of local
repositioning of charged surface residues on the kinetics of
protein dimerization probed by Brownian dynamics
simulations J. Mol. Struct. 592 37–45

[47] Fisher E W, Rojnuckarin A and Kim S 2002 Exhaustive
enumeration of the effects of point charge mutations on the
electrostatically driven association of hemoglobin subunits,
using weighted-ensemble Brownian dynamics simulations
Struct. Chem. 13 193–202

[48] Faradjian A K and Elber R 2004 Computing timescales from
reaction coordinates by milestoning J. Chem. Phys.
120 10880–9

[49] West A M A, Elber R and Shalloway D 2007 Extending
molecular dynamics timescales with milestoning: example
of complex kinetics in a solvated peptide J. Chem. Phys.
126 145104

[50] Vanden-Eijnden E, Venturoli M, Ciccotti G and Elber R 2008
On the assumptions underlying milestoning J. Chem. Phys.
129 174102

[51] Montroll E W and Weiss G H 1965 Random walks on lattices.
2 J. Math. Phys. 6 167

[52] Kampen N G v 1992 Stochastic Processes in Physics and
Chemistry (Amsterdam: North-Holland)

[53] Elber R 2007 A milestoning study of the kinetics of an
allosteric transition: atomically detailed simulations of
deoxy Scapharca hemoglobin Biophys. J. 92 L85–L7

[54] E W, Ren W Q and Vanden-Eijnden E 2005 Finite
temperature string method for the study of rare events
J. Phys. Chem. B 109 6688–93

[55] E W and Vanden-Eijnden E 2006 Towards a theory of
transition paths J. Stat. Phys. 123 503–23

[56] Vanden-Eijnden E and Tal F A 2005 Transition state theory:
variational formulation, dynamical corrections, and error
estimates J. Chem. Phys. 123 184103

[57] E W, Ren W Q and Vanden-Eijnden E 2002 String method for
the study of rare events Phys. Rev. B 66 052301

[58] Henkelman G and Jonsson H 2000 Improved tangent estimate
in the nudged elastic band method for finding minimum
energy paths and saddle points J. Chem. Phys. 113 9978

[59] Henkelman G, Uberuaga B P and Jonsson H 2000 A climbing
image nudged elastic band method for finding saddle points
and minimum energy paths J. Chem. Phys. 113 9901

[60] E W, Ren W Q and Vanden-Eijnden E 2005 Transition
pathways in complex systems: reaction coordinates,
isocommittor surfaces, and transition tubes Chem. Phys.
Lett. 413 242–7

[61] Gardiner C W 2004 Handbook of Stochastic Methods: for
Physics, Chemistry, and the Natural Sciences (Berlin:
Springer)

[62] Ren W, Vanden-Eijnden E, Maragakis P and E W 2005
Transition pathways in complex systems: application of the
finite-temperature string method to the alanine dipeptide
J. Chem. Phys. 123 134109

21

http://dx.doi.org/10.1088/0953-8984/15/1/314
http://dx.doi.org/10.2307/2291325
http://dx.doi.org/10.1063/1.2889943
http://dx.doi.org/10.1103/PhysRevLett.96.255701
http://dx.doi.org/10.1063/1.2335640
http://dx.doi.org/10.1016/j.physa.2004.04.033
http://dx.doi.org/10.1016/j.jcp.2004.11.003
http://dx.doi.org/10.1063/1.1562614
http://dx.doi.org/10.1063/1.2976011
http://dx.doi.org/10.1103/PhysRevLett.98.268301
http://dx.doi.org/10.1063/1.3029696
http://dx.doi.org/10.1103/PhysRevE.71.056709
http://dx.doi.org/10.1103/PhysRevLett.94.018104
http://dx.doi.org/10.1529/biophysj.108.136267
http://dx.doi.org/10.1021/jp809103k
http://dx.doi.org/10.1063/1.2767625
http://dx.doi.org/10.1063/1.2776270
http://dx.doi.org/10.1063/1.2953325
http://dx.doi.org/10.1016/S0006-3495(96)79552-8
http://dx.doi.org/10.1063/1.3070677
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1063/1.446900
http://dx.doi.org/10.1016/S0959-440X(02)00311-1
http://dx.doi.org/10.1016/S0006-3495(00)76327-2
http://dx.doi.org/10.1073/pnas.0706349104
http://dx.doi.org/10.1073/pnas.95.8.4288
http://dx.doi.org/10.1023/A:1015764801223
http://dx.doi.org/10.1063/1.1738640
http://dx.doi.org/10.1063/1.2716389
http://dx.doi.org/10.1063/1.2996509
http://dx.doi.org/10.1063/1.1704269
http://dx.doi.org/10.1529/biophysj.106.101899
http://dx.doi.org/10.1021/jp0455430
http://dx.doi.org/10.1007/s10955-005-9003-9
http://dx.doi.org/10.1063/1.2102898
http://dx.doi.org/10.1103/PhysRevB.66.052301
http://dx.doi.org/10.1063/1.1323224
http://dx.doi.org/10.1063/1.1329672
http://dx.doi.org/10.1016/j.cplett.2005.07.084
http://dx.doi.org/10.1063/1.2013256


J. Phys.: Condens. Matter 21 (2009) 333101 Topical Review

[63] Maragliano L, Fischer A, Vanden-Eijnden E and
Ciccotti G 2006 String method in collective variables:
minimum free energy paths and isocommittor surfaces
J. Chem. Phys. 125 024106

[64] Maragliano L and Vanden-Eijnden E 2007 On-the-fly string
method for minimum free energy paths calculation Chem.
Phys. Lett. 446 182–90

[65] Hummer G 2004 From transition paths to transition states and
rate coefficients J. Chem. Phys. 120 516–23

[66] E W, Ren W Q and Vanden-Eijnden E 2005 Transition
pathways in complex systems: reaction coordinates,
isocommittor surfaces, and transition tubes Chem. Phys.
Lett. 413 242–7

[67] Peters B, Beckham G T and Trout B L 2007 Extensions to the
likelihood maximization approach for finding reaction
coordinates J. Chem. Phys. 127 034109

[68] Best R B and Hummer G 2005 Reaction coordinates and rates
from transition paths Proc. Natl Acad. Sci. USA
102 6732–7

[69] Dinner A R, So S S and Karplus M 1998 Use of quantitative
structure–property relationships to predict the folding
ability of model proteins Proteins: Struct. Funct.
Bioinform. 33 177–203

[70] Dinner A R, So S S and Karplus M 2002 Computational
Methods for Protein Folding pp 1–34

[71] So S S and Karplus M 1997 Three-dimensional quantitative
structure-activity relationships from molecular similarity
matrices and genetic neural networks. 1. Method and
validations J. Med. Chem. 40 4347–59

[72] Metzner P, Schutte C and Vanden-Eijnden E 2006 Illustration
of transition path theory on a collection of simple examples
J. Chem. Phys. 125 084110

[73] Velez-Vega C, Borrero E E and Escobedo F A 2009 Kinetics
and reaction coordinate for the isomerization of alanine
dipeptide by a forward flux sampling protocol J. Chem.
Phys. 130 225101

[74] ten Wolde P R and Chandler D 2002 Drying-induced
hydrophobic polymer collapse Proc. Natl Acad. Sci. USA
99 6539–43

[75] Bolhuis P G, Dellago C and Chandler D 2000 Reaction
coordinates of biomolecular isomerization Proc. Natl Acad.
Sci. USA 97 5877–82

[76] Bolhuis P G 2005 Examining the folding of small two-state
proteins in explicit water using path sampling techniques
Biophys. Soc. Mtg Abstr. 88 182A

[77] Bolhuis P G 2005 Kinetic pathways of beta-hairpin
(un)folding in explicit solvent Biophys. J. 88 50–61

[78] Evans D A and Wales D J 2004 Folding of the GB1 hairpin
peptide from discrete path sampling J. Chem. Phys.
121 1080–90

[79] Hagan M F, Dinner A R, Chandler D and
Chakraborty A K 2003 Atomistic understanding of kinetic
pathways for single base-pair binding and unbinding in
DNA Proc. Natl Acad. Sci. USA 100 13922–7

[80] Basner J E and Schwartz S D 2005 How enzyme dynamics
helps catalyze a reaction in atomic detail: a transition path
sampling study J. Am. Chem. Soc. 127 13822–31

[81] Radhakrishnan R and Schlick T 2004 Orchestration of
cooperative events in DNA synthesis and repair mechanism
unraveled by transition path sampling of DNA polymerase
β’s closing Proc. Natl Acad. Sci. USA 101 5970–5

[82] Radhakrishnan R and Schlick T 2005 Fidelity discrimination
in DNA polymerase β: differing closing profiles for a
mismatched (G:A) versus matched (G:C) base pair J. Am.
Chem. Soc. 127 13245–52

[83] Radhakrishnan R, Yang L J, Arora K and Schlick T 2004
Exploring DNA polymerase beta mechanisms by advanced
sampling techniques Biophys. Soc. Mtg Abstr. 86 34A

[84] Marti J 2004 A molecular dynamics transition path sampling
study of model lipid bilayer membranes in aqueous
environments J. Phys.: Condens. Matter 16 5669–78

[85] Marti J and Csajka F S 2004 Transition path sampling study of
flip–flop transitions in model lipid bilayer membranes
Phys. Rev. E 69 061918

[86] Borrero E E and Escobedo F A 2006 Folding kinetics of a
lattice protein via a forward flux sampling approach
J. Chem. Phys. 125 164904–14

[87] Fersht A R 1997 Nucleation mechanisms in protein folding
Curr. Opin. Struct. Biol. 7 3–9

[88] Vendurscolo M, Paci E, Dobson C M and Karplus M 2001
Three key residues form a critical network in a protein
folding transition state Nature 409 641–5

[89] Martinez L M C, Quintana E E B, Escobedo F A and
DeLisa M P 2008 In silico protein fragmentation reveals
the importance of critical nuclei on domain reassembly
Biophys. J. 94 1575–88

[90] Bolhuis P G 2009 Two-state protein folding kinetics through
all-atom molecular dynamics based sampling Front. Biosci.
14 2801–28

[91] Chopra M, Reddy A S, Abbott N L and de Pablo J J 2008
Folding of polyglutamine chains J. Chem. Phys.
129 135102

[92] Sambriski E J, Ortiz V and de Pablo J J 2009 Sequence effects
in the melting and renaturation of short DNA
oligonucleotides: structure and mechanistic pathways
J. Phys.: Condens. Matter 21 034105

[93] Hu J, Ma A and Dinner A R 2008 A two-step
nucleotide-flipping mechanism enables kinetic
discrimination of DNA lesions by AGT Proc. Natl Acad.
Sci. USA 105 4615–20

[94] Wang Y L and Schlick T 2007 Distinct energetics and closing
pathways for DNA polymerase beta with 8-oxoG template
and different incoming nucleotides BMC Struct. Biol. 7 7

[95] Dimelow R J, Bryce R A, Masters A J, Hillier I H and
Burton N A 2006 Exploring reaction pathways with
transition path and umbrella sampling: application to
methyl maltoside J. Chem. Phys. 124 114113

[96] Pan A C, Sezer D and Roux B 2008 Finding transition
pathways using the string method with swarms of
trajectories J. Phys. Chem. B 112 3432–40

[97] Khalili M and Wales D J 2008 Pathways for conformational
change in nitrogen regulatory protein C from discrete path
sampling J. Phys. Chem. B 112 2456–65

[98] Wales D J 2002 Discrete path sampling Mol. Phys.
100 3285–305

[99] Ma L and Cui Q 2007 Activation mechanism of a signaling
protein at atomic resolution from advanced computations
J. Am. Chem. Soc. 129 10261–8

[100] Quaytman S L and Schwartz S D 2007 Reaction coordinate of
an enzymatic reaction revealed by transition path sampling
Proc. Natl Acad. Sci. USA 104 12253–8

[101] Saen-oon S, Quaytman-Machleder S, Schramm V L and
Schwartz S D 2008 Atomic detail of chemical
transformation at the transition state of an enzymatic
reaction Proc. Natl Acad. Sci. USA 105 16543–8

[102] Crehuet R and Field M J 2007 A transition path sampling
study of the reaction catalyzed by the enzyme chorismate
mutase J. Phys. Chem. B 111 5708–18

[103] Morelli M J, Tanase-Nicola S, Allen R J and
ten Wolde P R 2008 Reaction coordinates for the flipping
of genetic switches Biophys. J. 94 3413–23

[104] Morelli M J, ten Wolde P R and Allen R J 2009 DNA looping
provides stability and robustness to the bacteriophase
lambda switch Proc. Natl Acad. Sci. USA 106 18101–6

[105] Huang L and Makarov D E 2008 The rate constant of polymer
reversal inside a pore J. Chem. Phys. 128 114903

[106] Hernandez-Ortiz J P and de Pablo J J 2008 Hydrodynamic
effects on the translocation rate of a polymer through a
narrow pore J. Chem. Phys. at press

[107] Chekmarev D S, Ishida T and Levy R M 2004 Long-time
conformational transitions of alanine dipeptide in aqueous
solution: continuous and discrete-state kinetic models
J. Phys. Chem. B 108 19487–95

22

http://dx.doi.org/10.1063/1.2212942
http://dx.doi.org/10.1016/j.cplett.2007.08.017
http://dx.doi.org/10.1063/1.1630572
http://dx.doi.org/10.1016/j.cplett.2005.07.084
http://dx.doi.org/10.1063/1.2748396
http://dx.doi.org/10.1073/pnas.0408098102
http://dx.doi.org/10.1002/(SICI)1097-0134(19981101)33:2<177::AID-PROT4>3.0.CO;2-G
http://dx.doi.org/10.1021/jm970487v
http://dx.doi.org/10.1063/1.2335447
http://dx.doi.org/10.1063/1.3147465
http://dx.doi.org/10.1073/pnas.052153299
http://dx.doi.org/10.1073/pnas.100127697
http://dx.doi.org/10.1529/biophysj.104.048744
http://dx.doi.org/10.1063/1.1759317
http://dx.doi.org/10.1073/pnas.2036378100
http://dx.doi.org/10.1021/ja043320h
http://dx.doi.org/10.1073/pnas.0308585101
http://dx.doi.org/10.1021/ja052623o
http://dx.doi.org/10.1088/0953-8984/16/32/004
http://dx.doi.org/10.1103/PhysRevE.69.061918
http://dx.doi.org/10.1063/1.2357944
http://dx.doi.org/10.1016/S0959-440X(97)80002-4
http://dx.doi.org/10.1038/35054591
http://dx.doi.org/10.1529/biophysj.107.119651
http://dx.doi.org/10.2741/3415
http://dx.doi.org/10.1063/1.2980043
http://dx.doi.org/10.1088/0953-8984/21/3/034105
http://dx.doi.org/10.1073/pnas.0708058105
http://dx.doi.org/10.1186/1472-6807-7-7
http://dx.doi.org/10.1063/1.2172604
http://dx.doi.org/10.1021/jp0777059
http://dx.doi.org/10.1021/jp076628e
http://dx.doi.org/10.1080/00268970210162691
http://dx.doi.org/10.1021/ja073059f
http://dx.doi.org/10.1073/pnas.0704304104
http://dx.doi.org/10.1073/pnas.0808413105
http://dx.doi.org/10.1021/jp067629u
http://dx.doi.org/10.1529/biophysj.107.116699
http://dx.doi.org/10.1073/pnas.0810399106
http://dx.doi.org/10.1063/1.2890006
http://dx.doi.org/10.1021/jp048540w


J. Phys.: Condens. Matter 21 (2009) 333101 Topical Review

[108] de Oliveira C A F, Hamelberg D and McCammon J A 2007
Estimating kinetic rates from accelerated molecular
dynamics simulations: alanine dipeptide in explicit solvent
as a case study J. Chem. Phys. 127 175105–8

[109] Chun H M, Padilla C E, Chin D N, Watanabe M, Karlov V I,
Alper H E, Soosaar K, Blair K B, Becker O M,
Caves L S D, Nagle R, Haney D N and Farmer B L 2000
MBO(N)D: a multibody method for long-time molecular
dynamics simulations J. Comput. Chem. 21 159–84

[110] Vedell P and Wu Z 2008 The solution of the boundary-value
problems for the simulation of transition of protein
conformation Int. J. Numer. Anal. Model. submitted

[111] Frenkel D and Smit B 2002 Understanding Molecular
Simulation: from Algorithms to Applications
(Boston: Academic)

[112] Neidigh J W, Fesinmeyer R M and Andersen N H 2002
Designing a 20-residue protein Nat. Struct. Biol. 9 425–30

[113] Linhananta A, Boer J and MacKay I 2005 The equilibrium
properties and folding kinetics of an all-atom Go model of
the Trp-cage J. Chem. Phys. 122 114901

[114] Ota M, Ikeguchi M and Kidera A 2004 Phylogeny of
protein-folding trajectories reveals a unique pathway to
native structure Proc. Natl Acad. Sci. USA 101 17658–63

[115] Simmerling C, Strockbine B and Roitberg A E 2002 All-atom
structure prediction and folding simulations of a stable
protein J. Am. Chem. Soc. 124 11258–9

[116] Snow C D, Zagrovic B and Pande V S 2002 The Trp cage:
folding kinetics and unfolded state topology via molecular
dynamics simulations J. Am. Chem. Soc. 124 14548–9

23

http://dx.doi.org/10.1063/1.2794763
http://dx.doi.org/10.1002/(SICI)1096-987X(200002)21:3<159::AID-JCC1>3.0.CO;2-J
http://dx.doi.org/10.1038/nsb798
http://dx.doi.org/10.1063/1.1874812
http://dx.doi.org/10.1073/pnas.0407015102
http://dx.doi.org/10.1021/ja0273851
http://dx.doi.org/10.1021/ja028604l

	1. Introduction
	2. Path sampling methods
	2.1. Transition path sampling (TPS) scheme
	2.2. Interface-based transition path sampling schemes
	2.3. Forward flux sampling (FFS) schemes
	2.4. Other related interface-based methods
	2.5. Selecting and sampling the order parameter '154

	3. Applications
	3.1. General biological applications
	3.2. Illustrative cases

	4. Conclusions
	Acknowledgments
	References

